scholarly journals Regulation of hsnT, nodF and nodE genes in Rhizobium tropici CIAT 899 and their roles in the synthesis of Nod factors and in the symbiosis

Microbiology ◽  
2019 ◽  
Vol 165 (9) ◽  
pp. 990-1000
Author(s):  
Douglas Fabiano Gomes ◽  
Leandro Datola Tullio ◽  
Pablo del Cerro ◽  
Andre Shigueyoshi Nakatani ◽  
Amanda Alves Paiva Rolla-Santos ◽  
...  
2001 ◽  
Vol 183 (11) ◽  
pp. 3408-3416 ◽  
Author(s):  
Isabel M. López-Lara ◽  
Dimitris Kafetzopoulos ◽  
Herman P. Spaink ◽  
Jane E. Thomas-Oates

ABSTRACT The products of the rhizobial nodulation genes are involved in the biosynthesis of lipochitin oligosaccharides (LCOs), which are host-specific signal molecules required for nodule formation. The presence of an O-acetyl group on C-6 of the nonreducingN-acetylglucosamine residue of LCOs is due to the enzymatic activity of NodL. Here we show that transfer of the nodLgene into four rhizobial species that all normally produce LCOs that are not modified on C-6 of the nonreducing terminal residue results in production of LCOs, the majority of which have an acetyl residue substituted on C-6. Surprisingly, in transconjugant strains ofMesorhizobium loti, Rhizobium etli, and Rhizobium tropici carrying nodL, such acetylation of LCOs prevents the endogenous nodS-dependent transfer of theN-methyl group that is found as a substituent of the acylated nitrogen atom. To study this interference betweennodL and nodS, we have cloned thenodS gene of M. loti and used its product in in vitro experiments in combination with purified NodL protein. It has previously been shown that a chitooligosaccharide N deacetylated on the nonreducing terminus (the so-called NodBC metabolite) is the preferred substrate for NodS as well as for NodL. Here we show that the NodBC metabolite, acetylated by NodL, is not used by the NodS protein as a substrate while the NodL protein can acetylate the NodBC metabolite that has been methylated by NodS.


1998 ◽  
Vol 11 (10) ◽  
pp. 979-987 ◽  
Author(s):  
Jorge Luis Folch-Mallol ◽  
Hamid Manyani ◽  
Silvia Marroquí ◽  
Carolina Sousa ◽  
Carmen Vargas ◽  
...  

A cosmid from the Rhizobium tropici CIAT899 symbiotic plasmid, containing most of the nodulation genes described in this strain, has been isolated. Although this cosmid does not carry a nodD gene, it confers ability to heterologous Rhizobium spp. to nodulate R. tropici hosts (Phaseolus vulgaris, Macroptilium atropurpureum, and Leucaena leucocephala). The observed phenotype is due to constitutive expression of the nodABCSUIJ operon, which has lost its regulatory region and is expressed from a promoter present in the cloning vector. Thin-layer chromatography (TLC) analysis of the Nod factors produced by this construction shows that it is still capable of synthesizing sulfated compounds, suggesting that the nodHPQ genes are organized as an operon that is transcribed in a nodD-independent manner and is not regulated by flavonoids. Se ha aislado un cósmido del plásmido simbiótico de Rhizobium tropici CIAT899 que contiene la mayoría de los genes de nodulación descrito para esta estirpe, menos el gen regulador nodD. La introducción de este cósmido en una estirpe curada del plásmido simbiótico de R. tropici CIAT899 permite la nodulación en las plantas ensayadas (Phaseolus vulgaris, Macroptilium atropurpureum, y Leucaena leucocephala). El fenotipo observado se debe a la expresión constitutiva del operón nodABCSUIJ bajo el promotor del gen de resistencia a la kanamicina, que lleva el vector donde se ha clonado el fragmento de ADN. Análisis por cromatografia de capa fina demuestran que esta construcción es capaz de sulfatar el extremo reductor del factor Nod. Estas evidencias sugieren que los genes nodHPQ constituyen un operón, y que su expresión es independiente del gen regulador nodD.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Pablo del Cerro ◽  
Francisco Pérez-Montaño ◽  
Antonio Gil-Serrano ◽  
Francisco Javier López-Baena ◽  
Manuel Megías ◽  
...  

2001 ◽  
Vol 47 (6) ◽  
pp. 574-579 ◽  
Author(s):  
Hamid Manyani ◽  
Carolina Sousa ◽  
María-Eugenia Soria Díaz ◽  
Antonio Gil-Serrano ◽  
Manuel Megías

Rhizobium tropici CIAT899 is a tropical symbiont able to nodulate various legumes such as Leucaena, Phaseolus, and Macroptilium. Broad host range of this species is related to its Nod factors wide spectrum. R. tropici contains Nod factors sulphation nod genes, nodHPQ genes, which control nodulation efficiency in Leucaena. To study nodHPQ regulation, we carried out different interposon insertions in its upstream region. One of these generated interruptions, nodI mutant produced nonsulphated Nod factors suggesting a possible dependence of these genes on nodI upstream region. Moreover, analysis results of lacZ transcriptional fusions with these genes in symbiotic plasmid showed dependence of these genes on NodD protein. In order to determine nodHPQ organization, we studied the effect of interposon insertion upstream of each lacZ transcriptional fusion, and the data obtained was used to indicate that nodHPQ belong to the nodABCSUIJ operon. However, comparison between nodP::lacZ β-galactosidase activity in the symbiotic plasmid and in the pHM500 plasmid (containing nodHPQ genes) suggested constitutive expression in free living, and flavonoid inducible expression in symbiotic conditions. Constitutive nodHPQ expression may play a role in bacterial house-keeping metabolism. On the other hand, the transference of R. tropici nodHPQ genes to other rhizobia that do not present sulphated substitutions demonstrated that NodH protein sulphotransference is specific to C6 at the reducing end.Key words: Nod factors, nodHPQ genes, Rhizobium tropici, nod-box.


1998 ◽  
Vol 180 (11) ◽  
pp. 2866-2874 ◽  
Author(s):  
Patrick Mavingui ◽  
Toon Laeremans ◽  
Margarita Flores ◽  
David Romero ◽  
Esperanza Martínez-Romero ◽  
...  

ABSTRACT Amplifiable DNA regions (amplicons) have been identified in the genome of Rhizobium etli. Here we report the isolation and molecular characterization of a symbiotic amplicon of Rhizobium tropici. To search for symbiotic amplicons, a cartridge containing a kanamycin resistance marker that responds to gene dosage and conditional origins of replication and transfer was inserted in the nodulation region of the symbiotic plasmid (pSym) of R. tropici CFN299. Derivatives harboring amplifications were selected by increasing the concentration of kanamycin in the cell culture. The amplified DNA region was mobilized into Escherichia coli and then into Agrobacterium tumefaciens. The 60-kb symbiotic amplicon, which we termed AMPRtrCFN299pc60, contains several nodulation and nitrogen fixation genes and is flanked by a novel insertion sequence ISRtr1. Amplification of AMPRtrCFN299pc60 through homologous recombination between ISRtr1 repeats increased the amount of Nod factors. Strikingly, the conjugal transfer of the amplicon into a plasmidlessA. tumefaciens strain confers on the transconjugant the ability to produce R. tropici Nod factors and to nodulatePhaseolus vulgaris, indicating that R. tropicigenes essential for the nodulation process are confined to an ampliable DNA region of the pSym.


2013 ◽  
Vol 26 (4) ◽  
pp. 451-460 ◽  
Author(s):  
B. Guasch-Vidal ◽  
J. Estévez ◽  
M. S. Dardanelli ◽  
M. E. Soria-Díaz ◽  
F. Fernández de Córdoba ◽  
...  

The nodulation (nod) genes of Rhizobium tropici CIAT899 can be induced by very low concentrations (micromolar to nanomolar range) of several flavonoid molecules secreted by the roots of leguminous plants under a number of different conditions. Some of these conditions have been investigated and appear to have a great influence on the concentration and the number of different Nod factors, which can induce root nodule primordia and pseudonodules in several leguminous plant roots. In one such condition, we added up to 300 mM NaCl to the induction medium of R. tropici CIAT899 containing the nod gene inducer apigenin. At the higher concentrations of NaCl, larger amounts and more different Nod factors were produced than in the absence of extra NaCl. To our surprise, under control conditions (300 mM NaCl without apigenin), some Nod-factor-like spots were also observed on the thin-layer plates used to detect incorporation of radiolabeled glucosamine into newly synthesized Nod factors. This phenomenon was further investigated with thin-layer plates, fusions of nod genes to the lacZ gene, high-performance liquid chromatography, mass spectrometry, and the formation of pseudonodules on bean roots. Here, we report that, in the absence of flavonoid inducers, high concentrations of NaCl induced nod genes and the production of Nod factors.


1999 ◽  
Vol 12 (9) ◽  
pp. 820-824 ◽  
Author(s):  
T. Laeremans ◽  
C. Snoeck ◽  
J. Mariën ◽  
C. Verreth ◽  
E. Martínez-Romero ◽  
...  

Phaseolus vulgaris is a promiscuous host plant that can be nodulated by many different rhizobia representing a wide spectrum of Nod factors. In this study, we introduced the Rhizobium tropici CFN299 Nod factor sulfation genes nodHPQ into Azorhizobium caulinodans. The A. caulinodans transconjugants produce Nod factors that are mostly if not all sulfated and often with an arabinosyl residue as the reducing end glycosylation. Using A. caulinodans mutant strains, affected in reducing end decorations, and their respective transconjugants in a bean nodulation assay, we demonstrated that bean nodule induction efficiency, in decreasing order, is modulated by the Nod factor reducing end decorations fucose, arabinose or sulfate, and hydrogen.


2007 ◽  
Vol 20 (11) ◽  
pp. 1421-1430 ◽  
Author(s):  
Christian Sohlenkamp ◽  
Kanaan A. Galindo-Lagunas ◽  
Ziqiang Guan ◽  
Pablo Vinuesa ◽  
Sally Robinson ◽  
...  

Lysyl-phosphatidylglycerol (LPG) is a well-known membrane lipid in several gram-positive bacteria but is almost unheard of in gram-negative bacteria. In Staphylococcus aureus, the gene product of mprF is responsible for LPG formation. Low pH-inducible genes, termed lpiA, have been identified in the gram-negative α-proteobacteria Rhizobium tropici and Sinorhizobium medicae in screens for acid-sensitive mutants and they encode homologs of MprF. An analysis of the sequenced bacterial genomes reveals that genes coding for homologs of MprF from S. aureus are present in several classes of organisms throughout the bacterial kingdom. In this study, we show that the expression of lpiA from R. tropici in the heterologous hosts Escherichia coli and Sinorhizobium meliloti causes formation of LPG. A wild-type strain of R. tropici forms LPG (about 1% of the total lipids) when the cells are grown in minimal medium at pH 4.5 but not when grown in minimal medium at neutral pH or in complex tryptone yeast (TY) medium at either pH. LPG biosynthesis does not occur when lpiA is deleted and is restored upon complementation of lpiA-deficient mutants with a functional copy of the lpiA gene. When grown in the low-pH medium, lpiA-deficient rhizobial mutants are over four times more susceptible to the cationic peptide polymyxin B than the wild type.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 959
Author(s):  
Arshad Jalal ◽  
Fernando Shintate Galindo ◽  
Eduardo Henrique Marcandalli Boleta ◽  
Carlos Eduardo da Silva Oliveira ◽  
André Rodrigues dos Reis ◽  
...  

Enrichment of staple food with zinc (Zn) along with solubilizing bacteria is a sustainable and practical approach to overcome Zn malnutrition in human beings by improving plant nutrition, nutrient use efficiency, and productivity. Common bean (Phaseolus vulgaris L.) is one of a staple food of global population and has a prospective role in agronomic Zn biofortification. In this context, we evaluated the effect of diazotrophic bacterial co-inoculations (No inoculation, Rhizobium tropici, R. tropici + Azospirillum brasilense, R. tropici + Bacillus subtilis, R. tropici + Pseudomonas fluorescens, R. tropici + A. brasilense + B. subtilis, and R. tropici + A. brasilense + P. fluorescens) in association with soil Zn application (without and with 8 kg Zn ha−1) on Zn nutrition, growth, yield, and Zn use efficiencies in common bean in the 2019 and 2020 crop seasons. Soil Zn application in combination with R. tropici + B. subtilis improved Zn accumulation in shoot and grains with greater shoot dry matter, grain yield, and estimated Zn intake. Zinc use efficiency, recovery, and utilization were also increased with co-inoculation of R. tropici + B. subtilis, whereas agro-physiological efficiency was increased with triple co-inoculation of R. tropici + A. brasilense + P. fluorescens. Therefore, co-inoculation of R. tropici + B. subtilis in association with Zn application is recommended for biofortification and higher Zn use efficiencies in common bean in the tropical savannah of Brazil.


Sign in / Sign up

Export Citation Format

Share Document