scholarly journals Significant variability exists in the cytotoxicity of global methicillin-resistant Staphylococcus aureus lineages

Microbiology ◽  
2021 ◽  
Vol 167 (12) ◽  
Author(s):  
Maisem Laabei ◽  
Sharon J. Peacock ◽  
Beth Blane ◽  
Sarah L. Baines ◽  
Benjamin P. Howden ◽  
...  

Staphylococcus aureus is a major human pathogen where the emergence of antibiotic resistant lineages, such as methicillin-resistant S. aureus (MRSA), is a major health concern. While some MRSA lineages are restricted to the healthcare setting, the epidemiology of MRSA is changing globally, with the rise of specific lineages causing disease in healthy people in the community. In the past two decades, community-associated MRSA (CA-MRSA) has emerged as a clinically important and virulent pathogen associated with serious skin and soft-tissue infections (SSTI). These infections are primarily cytotoxin driven, leading to the suggestion that hypervirulent lineages/multi-locus sequence types (STs) exist. To examine this, we compared the cytotoxicity of 475 MRSA isolates representing five major MRSA STs (ST22, ST93, ST8, ST239 and ST36) by employing a monocyte-macrophage THP-1 cell line as a surrogate for measuring gross cytotoxicity. We demonstrate that while certain MRSA STs contain highly toxic isolates, there is such variability within lineages to suggest that this aspect of virulence should not be inferred from the genotype of any given isolate. Furthermore, by interrogating the accessory gene regulator (Agr) sequences in this collection we identified several Agr mutations that were associated with reduced cytotoxicity. Interestingly, the majority of isolates that were attenuated in cytotoxin production contained no mutations in the agr locus, indicating a role of other undefined genes in S. aureus toxin regulation.

2021 ◽  
Author(s):  
Maisem Laabei ◽  
Sharon Peacock ◽  
Beth Blane ◽  
Sarah Louise Baines ◽  
Timothy P. Stinear ◽  
...  

Staphylococcus aureus is a major human pathogen where the emergence of antibiotic resistant lineages, such as methicillin-resistant S. aureus (MRSA), is a major health concern. While some MRSA lineages are restricted to the healthcare setting, the epidemiology of MRSA is changing globally, with the rise of specific lineages causing disease in healthy people in the community. In the past two decades, community-associated MRSA (CA-MRSA) has emerged as a clinically important and virulent pathogen associated with serious skin and soft-tissue infections (SSTI). These infections are primarily toxin driven, leading to the suggestion that hyper-virulent lineages/multi-locus sequence types (STs) exist. To examine this, we compared the toxic activity of 475 MRSA isolates representing five major MRSA STs (ST22, ST93, ST8, ST239 and ST36) by employing a monocyte-macrophage THP-1 cell line as a surrogate for measuring gross cytotoxicity. We demonstrate that while certain MRSA STs contain highly toxic isolates, there is such variability within lineages to suggest that this aspect of virulence should not be inferred from the genotype of any given isolate. Furthermore, by interrogating the accessory gene regulator (Agr) sequences in this collection we identified several Agr mutations that were associated with reduced toxicity. Interestingly, the majority of isolates that were attenuated in toxin production contained no mutations in the agr locus, indicating a role of other undefined genes in S. aureus toxin regulation.


2020 ◽  
Vol 2 (7) ◽  
Author(s):  
Yuta Okada ◽  
Shu Okugawa ◽  
Mahoko Ikeda ◽  
Tatsuya Kobayashi ◽  
Ryoichi Saito ◽  
...  

Quorum sensing is known to regulate bacterial virulence, and the accessory gene regulator (agr) loci is one of the genetic loci responsible for its regulation. Recent reports examining Clostridioides difficile show that two agr loci, agr1 and agr2, regulate toxin production, but the diversity of agr loci and their epidemiology is unknown. In our study, in silico analysis was performed to research genetic diversity of agr, and C. difficile isolates from clinical samples underwent multilocus sequence typing (MLST) and PCR analysis of agr loci. To reveal the distribution of agr among different strains, phylogenetic analysis was also performed. In our in silico analysis, two different subtypes, named agr2R and agr2M, were found in agr2, which were previously reported. PCR analysis of 133 C . difficile isolates showed that 131 strains had agr1, 61 strains had agr2R, and 26 strains had agr2M; agr2R was mainly found in clade 1 or clade 2 organisms, whereas agr2M was only found in clade 4. With rare exception, agr1-negative sequence types (STs) belonged to clade C-Ⅰ and C-Ⅲ, and one clade 4 strain had agr2R. Our study revealed subtypes of agr2 not previously recognized, and the distribution of several agr loci in C. difficile . These findings provide a foundation for further functional and clinical research of the agr loci.


Microbiology ◽  
2020 ◽  
Vol 166 (8) ◽  
pp. 695-706 ◽  
Author(s):  
Kevin H. Martin ◽  
Grace I. Borlee ◽  
William H. Wheat ◽  
Mary Jackson ◽  
Bradley R. Borlee

Biofilm-associated infections are difficult to eradicate because of their ability to tolerate antibiotics and evade host immune responses. Amoebae and/or their secreted products may provide alternative strategies to inhibit and disperse biofilms on biotic and abiotic surfaces. We evaluated the potential of five predatory amoebae – Acanthamoeba castellanii, Acanthamoeba lenticulata, Acanthamoeba polyphaga, Vermamoeba vermiformis and Dictyostelium discoideum – and their cell-free secretions to disrupt biofilms formed by methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium bovis . The biofilm biomass produced by MRSA and M. bovis was significantly reduced when co-incubated with A. castellanii, A. lenticulata and A. polyphaga, and their corresponding cell-free supernatants (CFS). Acanthamoeba spp. generally produced CFS that mediated biofilm dispersal rather than directly killing the bacteria; however, A. polyphaga CFS demonstrated active killing of MRSA planktonic cells when the bacteria were present at low concentrations. The active component(s) of the A. polyphaga CFS is resistant to freezing, but can be inactivated to differing degrees by mechanical disruption and exposure to heat. D. discoideum and its CFS also reduced preformed M. bovis biofilms, whereas V. vermiformis only decreased M. bovis biofilm biomass when amoebae were added. These results highlight the potential of using select amoebae species or their CFS to disrupt preformed bacterial biofilms.


2020 ◽  
Vol 69 (12) ◽  
pp. 1332-1338
Author(s):  
Zhen Xu ◽  
Xiaodong Li ◽  
Dan Tian ◽  
Zhuoyu Sun ◽  
Liqiong Guo ◽  
...  

Introduction. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major causes of hospital-acquired infections. Over the past two decades MRSA has become ‘epidemic’ in many hospitals worldwide. However, little is known about the genetic background of S. aureus recovered from hospital personnel in China. Hypothesis/Gap Statement. The diversity of S. aureus genotypes warrants further surveillance and genomic studies to better understand the relatedness of these bacteria to those recovered from patients and the community. Aim. The aim of this study was to determine the genetic diversity of MRSA and methicillin-susceptible S. aureus (MSSA) recovered from hospital personnel in Tianjin, North China. Methodology. Three hundred and sixty-eight hand or nasal swabs were collected from 276 hospital personnel in 4 tertiary hospitals in Tianjin, North China between November 2017 and March 2019. In total, 535 Gram-positive bacteria were isolated, of which 59 were identified as S. aureus . Staphylococcal cassette chromosome mec (SCCmec) typing, multi-locus sequence typing (MLST) and spa typing were performed to determine the molecular characteristics of S. aureus . Results. Thirty-one out of 276 (11 %) hospital personnel were S. aureus carriers, whereas 11/276 (4 %) carried MRSA. Fifty out of 59 (85 %) S. aureus isolates were resistant or intermediately resistant to erythromycin. The dominant genotypes of MRSA recovered from hospital personnel were ST398-t034-SCCmecIV/V and ST630-t084/t2196, whereas the major genotypes of MSSA included ST15-t078/t084/t346/t796/t8862/t8945/t11653 and ST398-t189/t034/t078/t084/t14014. Conclusion. Although the predominant genotypes of MRSA recovered from hospital personnel in this study were different from the main genotypes that have previously been reported to cause infections in Tianjin and in other geographical areas of China, the MRSA ST398-t034 genotype has previously been reported to be associated with livestock globally. The dominant MSSA genotypes recovered from hospital personnel were consistent with the those previously reported to have been recovered from the clinic.


2020 ◽  
Vol 69 (4) ◽  
pp. 548-551
Author(s):  
Benjamin Canning ◽  
Iskandar Mohamed ◽  
Nimal Wickramasinghe ◽  
Jonathan Swindells ◽  
Matthew K. O'Shea

Introduction. The nuc gene encodes a thermonuclease which is present in Staphylococcus aureus but not in coagulase-negative staphylococci (CoNS) and is the target of the rapid phenotypic thermonuclease test. The effect of nuc gene variation in methicillin-resistant S. aureus (MRSA) on the performance of PCR testing has been noted, although there are no reports about the effect of MRSA on the activity of the thermonuclease enzyme. Aim. Our goals were to examine the sensitivity and specificity of the thermonuclease test used to distinguish S. aureus from CoNS cultured from blood. In addition, we aimed to assess differences in the sensitivity, specificity and accuracy of the thermonuclease test between methicillin-sensitive S. aureus (MSSA) and MRSA isolates. Methodology. We performed a retrospective analysis of 1404 isolates. Each isolate from a positive blood culture was identified as a Gram-positive coccus by microscopy then analysed with the thermonuclease test (Southern Group Laboratory) prior to confirmatory identification using VITEK microbial identification platforms (bioMérieux) and cefoxitin disc diffusion testing. Results. Of 1331 samples included in the final analysis, 189 were thermonuclease-positive, of which 176 were identified as S. aureus . Of the 1142 thermonuclease-negative samples, 13 were finally identified as S. aureus , giving a sensitivity of 93.1 % (95 % confidence interval [CI] 88.5–96.3) and specificity of 98.9 % (95 % CI 98.1–99.4). Of the nine proven MRSA samples, eight were thermonuclease-positive, giving a sensitivity of 88.9 % (95 % CI 51.8–99.7). Thermonuclease test accuracy for MSSA and MRSA isolates was 98.1 % (95 % CI 97.2–98.8) versus 98.8 % (95 % CI 98.0–99.3), respectively. Conclusions. In the era of increasing use of molecular-based microbiology assays, the thermonuclease test remains a simple, inexpensive and robust test for the presumptive identification of S. aureus cultured from blood, irrespective of methicillin sensitivity.


2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Richard M. Mariita ◽  
Rajul V. Randive

Hospital-associated infections (HAIs) are a major burden in healthcare systems. In this study, UVC LEDs emitting radiation from 260 to 270 nm were evaluated for effectiveness in reducing methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium and Acinetobacter baumannii . The array has four WD LEDs, each with 70 mW placed at 7 cm from test organisms. With 11.76 mJ cm−2, the study obtained 99.99% reduction (log10 reduction factor of 4) against MRSA and VRE. For A. baumannii , 9 mJ cm−2 obtained 99.999% reduction (log10 reduction factor of 5). These results present scientific evidence on how effective UVC LEDs can be used in the fight against HAIs.


2021 ◽  
Vol 7 (3) ◽  
Author(s):  
María Sol Haim ◽  
Rahat Zaheer ◽  
Amrita Bharat ◽  
Sabrina Di Gregorio ◽  
José Di Conza ◽  
...  

Staphylococcus aureus chronic airway infection in patients with cystic fibrosis (CF) allows this pathogen to adapt over time in response to different selection pressures. We have previously shown that the main sequence types related to community-acquired methicillin-resistant S. aureus (MRSA) infections in Argentina – ST5 and ST30 – are also frequently isolated from the sputum of patients with CF, but in these patients they usually display multi-drug antimicrobial resistance. In this study, we sequenced the genomes of MRSA from four paediatric CF patients with the goal of identifying mutations among sequential isolates, especially those possibly related to antimicrobial resistance and virulence, which might contribute to the adaptation of the pathogen in the airways of patients with CF. Our results revealed genetic differences in sequential MRSA strains isolated from patients with CF in both their core and accessory genomes. Although the genetic adaptation of S. aureus was distinct in different hosts, we detected independent mutations in thyA, htrA, rpsJ and gyrA – which are known to have crucial roles in S. aureus virulence and antimicrobial resistance – in isolates recovered from multiple patients. Moreover, we identified allelic variants that were detected in all of the isolates recovered after a certain time point; these non-synonymous mutations were in genes associated with antimicrobial resistance, virulence, iron scavenging and oxidative stress resistance. In conclusion, our results provide evidence of genetic variability among sequential MRSA isolates that could be implicated in the adaptation of these strains during chronic CF airway infection.


2021 ◽  
Vol 70 (9) ◽  
Author(s):  
Vidula Iyer ◽  
Janhavi Raut ◽  
Anindya Dasgupta

The pH of skin is critical for skin health and resilience and plays a key role in controlling the skin microbiome. It has been well reported that under dysbiotic conditions such as atopic dermatitis (AD), eczema, etc. there are significant aberrations of skin pH, along with a higher level of Staphylococcus aureus compared to the commensal Staphylococcus epidermidis on skin. To understand the effect of pH on the relative growth of S. epidermidis and S. aureus , we carried out simple in vitro growth kinetic studies of the individual microbes under varying pH conditions. We demonstrated that the growth kinetics of S. epidermidis is relatively insensitive to pH within the range of 5–7, while S. aureus shows a stronger pH dependence in that range. Gompertz’s model was used to fit the pH dependence of the growth kinetics of the two bacteria and showed that the equilibrium bacterial count of S. aureus was the more sensitive parameter. The switch in growth rate happens at a pH of 6.5–7. Our studies are in line with the general hypothesis that keeping the skin pH within an acidic range is advantageous in terms of keeping the skin microbiome in balance and maintaining healthy skin.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Vishal Gor ◽  
Aya J. Takemura ◽  
Masami Nishitani ◽  
Masato Higashide ◽  
Veronica Medrano Romero ◽  
...  

ABSTRACT Staphylococcus aureus is an important human pathogen whose success is largely attributed to its vast arsenal of virulence factors that facilitate its invasion into, and survival within, the human host. The expression of these virulence factors is controlled by the quorum sensing accessory gene regulator (Agr) system. However, a large proportion of clinical S. aureus isolates are consistently found to have a mutationally inactivated Agr system. These mutants have a survival advantage in the host but are considered irreversible mutants. Here we show, for the first time, that a fraction of Agr-negative mutants can revert their Agr activity. By serially passaging Agr-negative strains and screening for phenotypic reversion of hemolysis and subsequent sequencing, we identified two mutational events responsible for reversion: a genetic duplication plus inversion event and a poly(A) tract alteration. Additionally, we demonstrate that one clinical Agr-negative methicillin-resistant S. aureus (MRSA) isolate could reproducibly generate Agr-revertant colonies with a poly(A) tract genetic mechanism. We also show that these revertants activate their Agr system upon phagocytosis. We propose a model in which a minor fraction of Agr-negative S. aureus strains are phase variants that can revert their Agr activity and may act as a cryptic insurance strategy against host-mediated stress. IMPORTANCE Staphylococcus aureus is responsible for a broad range of infections. This pathogen has a vast arsenal of virulence factors at its disposal, but avirulent strains are frequently isolated as the cause of clinical infections. These isolates have a mutated agr locus and have been believed to have no evolutionary future. Here we show that a fraction of Agr-negative strains can repair their mutated agr locus with mechanisms resembling phase variation. The agr revertants sustain an Agr OFF state as long as they exist as a minority but can activate their Agr system upon phagocytosis. These revertant cells might function as a cryptic insurance strategy to survive immune-mediated host stress that arises during infection.


Author(s):  
Jeong Eun Lee ◽  
Shinwon Lee ◽  
Sohee Park ◽  
Soon O. Lee ◽  
Sun H. Lee

Few studies have examined the association between methicillin-susceptible Staphylococcus aureus (MSSA) infection and accessory gene regulator ( agr ) functionality. We evaluated the association between agr dysfunction and mortality in patients with MSSA bacteremia.


Sign in / Sign up

Export Citation Format

Share Document