scholarly journals Regulation of the type I protein secretion system by the MisR/MisS two-component system in Neisseria meningitidis

Microbiology ◽  
2009 ◽  
Vol 155 (5) ◽  
pp. 1588-1601 ◽  
Author(s):  
Soma Sannigrahi ◽  
Xinjian Zhang ◽  
Yih-Ling Tzeng

Neisseria meningitidis, an obligate human pathogen, remains a leading cause of meningitis and fatal sepsis. Meningococci are known to secrete a family of proteins, such as FrpC, with sequence similarity to the repeat-in-toxin (RTX) proteins via the type I secretion system. The meningococcal type I secretion proteins are encoded at two distant genetic loci, NMB1400 (hlyB) and NMB1738/1737 (hlyD/tolC), and are separated from the RTX toxin-like substrates. We have characterized the promoter elements of both hlyB and hlyD by primer extension and lacZ reporter fusions and revealed the growth phase-dependent upregulation of both genes. In addition, we showed that the MisR/MisS two-component system negatively regulates the expression of hlyB and hlyD/tolC. Direct binding of MisR to hlyB and hlyD promoters was demonstrated by electrophoretic mobility shift assay (EMSA), and DNase I protection assays identified MisR binding sites overlapping the promoter elements. Direct repression of hlyB transcription by MisR was supported by in vitro transcription assays. Mutations in the MisR/S system affected, but did not eliminate, the growth phase-dependent upregulation of hlyB, suggesting additional regulatory mechanisms. Increased secretion of RTX toxin-like proteins was detected in the cell-free media from misS mutant cultures, indicating that the amounts of extracellular RTX toxin-like proteins are, in part, controlled by the abundance of the type I secretion apparatus. This is, to our knowledge, the first example of a two-component system mediating secretion of cytotoxin family proteins by controlling expression of the type I secretion proteins.

2005 ◽  
Vol 73 (7) ◽  
pp. 4127-4137 ◽  
Author(s):  
J. Zheng ◽  
S. L. Tung ◽  
K. Y. Leung

ABSTRACT Edwardsiella tarda is a gram-negative enteric pathogen that causes hemorrhagic septicemia in fish and gastro- and extraintestinal infections in humans. A type III secretion system (TTSS) and a putative secretion system (EVP) have been found to play important roles in E. tarda pathogenesis. Our previous studies suggested that the TTSS and EVP gene clusters were regulated by a two-component system of EsrA-EsrB. In the present study, we characterized another regulator, EsrC, which showed significant sequence similarity to the AraC family of transcriptional regulators. Mutants with in-frame deletions of esrC increased the 50% lethal doses in blue gourami fish, reduced extracellular protein production, and failed to aggregate. Complementation of esrC restored these three phenotypes. Two-dimensional gel electrophoresis showed that EsrC regulated the expression of secreted proteins encoded by the TTSS (such as EseB and EseD) and EVP (EvpC) gene clusters. The expression of esrC required a functional two-component system of EsrA-EsrB. EsrC in turn regulated the expression of selected genes encoded in TTSS (such as the transcriptional unit of orf29and orf30, but not esaC) and genes encoded in the EVP gene cluster. The present study sheds light on the regulation of these two key virulence-associated secretion systems and provides greater insight into the pathogenic mechanisms of this bacterium.


2019 ◽  
Author(s):  
Adair L. Borges ◽  
Bardo Castro ◽  
Sutharsan Govindarajan ◽  
Tina Solvik ◽  
Veronica Escalante ◽  
...  

CRISPR-Cas systems are adaptive immune systems that protect bacteria from bacteriophage (phage) infection. To provide immunity, RNA-guided protein surveillance complexes recognize foreign nucleic acids, triggering their destruction by Cas nucleases. While the essential requirements for immune activity are well understood, the physiological cues that regulate CRISPR-Cas expression are not. Here, a forward genetic screen identifies a two-component system (KinB/AlgB), previously characterized in regulatingPseudomonas aeruginosavirulence and biofilm establishment, as a regulator of the biogenesis and activity of the Type I-F CRISPR-Cas system. Downstream of the KinB/AlgB system, activators of biofilm production AlgU (a σEorthologue) and AlgR, act as repressors of CRISPR-Cas activity during planktonic and surface-associated growth. AmrZ, another biofilm activator, functions as a surface-specific repressor of CRISPR-Cas immunity.Pseudomonasphages and plasmids have taken advantage of this regulatory scheme, and carry hijacked homologs of AmrZ, which are functional CRISPR-Cas repressors. This suggests that while CRISPR-Cas regulation may be important to limit self-toxicity, endogenous repressive pathways represent a vulnerability for parasite manipulation.


2006 ◽  
Vol 188 (5) ◽  
pp. 1750-1761 ◽  
Author(s):  
Yi Wen ◽  
Jing Feng ◽  
David R. Scott ◽  
Elizabeth A. Marcus ◽  
George Sachs

ABSTRACT About 200 genes of the gastric pathogen Helicobacter pylori increase expression at medium pHs of 6.2, 5.5, and 4.5, an increase that is abolished or much reduced by the buffering action of urease. Genes up-regulated by a low pH include the two-component system HP0165-HP0166, suggesting a role in the regulation of some of the pH-sensitive genes. To identify targets of HP0165-HP0166, the promoter regions of genes up-regulated by a low pH were grouped based on sequence similarity. Probes for promoter sequences representing each group were subjected to electrophoretic mobility shift assays (EMSA) with recombinant HP0166-His6 or a mutated response regulator, HP0166-D52N-His6, that can specifically determine the role of phosphorylation of HP0166 in binding (including a control EMSA with in-vitro-phosphorylated HP0166-His6). Nineteen of 45 promoter-regulatory regions were found to interact with HP0166-His6. Seven promoters for genes encoding α-carbonic anhydrase, omp11, fecD, lpp20, hypA, and two with unknown function (pHP1397-1396 and pHP0654-0675) were clustered in gene group A, which may respond to changes in the periplasmic pH at a constant cytoplasmic pH and showed phosphorylation-dependent binding in EMSA with HP0166-D52N-His6. Twelve promoters were clustered in groups B and C whose up-regulation likely also depends on a reduction of the cytoplasmic pH at a medium pH of 5.5 or 4.5. Most of the target promoters in groups B and C showed phosphorylation-dependent binding with HP0166-D52N-His6, but promoters for ompR (pHP0166-0162), pHP0682-0681, and pHP1288-1289 showed phosphorylation-independent binding. These findings, combined with DNase I footprinting, suggest that HP0165-0166 is an acid-responsive signaling system affecting the expression of pH-sensitive genes. Regulation of these genes responds either to a decrease in the periplasmic pH alone (HP0165 dependent) or also to a decrease in the cytoplasmic pH (HP0165 independent).


2019 ◽  
Author(s):  
Congcong Wang ◽  
Wenhui Chen ◽  
Aiguo Xia ◽  
Rongrong Zhang ◽  
Yajia Huang ◽  
...  

ABSTRACTPseudomonas aeruginosacan cause severe infections in humans. This bacteria often adopt a biofilm lifestyle that is hard to treat. In several previous studies, the PprA-PprB two-component system (TCS), which controls the expression of type IVb pili, BapA adhesin, and CupE fimbriae, was shown to be involved in biofilm formation. However, signals or environmental conditions that can trigger the PprA-PprB TCS are still unknown, and the molecular mechanisms of PprB-mediated biofilm formation are poorly characterized. Here we report that carbon starvation stress (CCS) can induce the expression ofpprBand genes in the PprB regulon. The stress response sigma factor RpoS, rather than the two-component sensor PprA, was determined to mediate the induction ofpprBtranscription. We also observed a strong negative regulation of PprB to the transcription of itself. Further experiments showed that PprB overexpression greatly enhanced cell-cell adhesion (CCA) and cell-surface adhesion (CSA) inP. aeruginosa. Specially, under the background of PprB overexpression, both of the BapA adhesin and CupE fimbriae displayed positive effect on CCA and CSA, while the type IVb pili showed an unexpected negative effect on CCA and no effect on CSA. In addition, expression of the PprB regulon genes displayed significant increases in 3-day colony biofilms, indicating a possible carbon limitation state in these biofilms. The CSS-RpoS-PprB-Bap/Flp/CupE/Tad pathway identified in this study provides a new perspective on the process of biofilm formation under carbon-limited environments.IMPORTANCETypically, determining the external signals that can trigger a regulatory system is crucial to understand the regulatory logic and inward function of that system. The PprA-PprB two-component system was reported to be involved in biofilm formation inPseudomonas aeruginosa, but the signals that can trigger this system are unknown. In this study, we found that carbon starvation stress (CSS) can induce the transcription ofpprBand genes in PprB regulon, through an RpoS dependent pathway. Increase of PprB expression leads to enhanced cell-cell and cell-surface adhesions inP. aeruginosa,both of which are dependent mainly on the Bap adhesin secretion system and partially on the CupE fimbriae. Our findings suggest that PprB reinforces the structure of biofilms under carbon-limited conditions, and the Bap secretion system and CupE fimbriae are two potential targets for biofilm treatment.


2005 ◽  
Vol 187 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Jiro Mitobe ◽  
Eiji Arakawa ◽  
Haruo Watanabe

ABSTRACT The chief function of the Cpx two-component system is perceiving various cell envelope stresses, but CpxR is also known to regulate the expression of the type III secretion system (TTSS) of Shigella sonnei through transcription of the primary regulator virF. Here, we have isolated novel cpxA mutants that exhibited decreased TTSS expression from Escherichia coli HW1273, which carries the virulence plasmid of S. sonnei. The cpxA deletion strain of HW1273 expressed β-galactosidase activity levels from the virF-lacZ fusion similar to those of HW1273. However, the second regulator InvE (VirB) and the TTSS component IpaB proteins were apparently expressed at a low level. In the cpxA strain, β-galactosidase activity levels from the invE-lacZ transcriptional fusion remained similar to those of HW1273, whereas the β-galactosidase activity level from the translational fusion of invE-lacZ was reduced to 21% of that of HW1273. Therefore, the deletion of the cpxA gene influenced TTSS expression chiefly at the posttranscriptional processing of InvE. In addition, the cpxA deletion strain of S. sonnei showed the same phenotype. These results indicate that the Cpx two-component system is involved in virulence expression through posttranscriptional processing of the regulatory protein InvE, a novel feature of the Cpx two-component system in posttranscriptional processing and virulence expression of Shigella.


2009 ◽  
Vol 46 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Xin-Ming Song ◽  
Wayne Connor ◽  
Karsten Hokamp ◽  
Lorne A. Babiuk ◽  
Andrew A. Potter

2003 ◽  
Vol 13 (05) ◽  
pp. 1303-1308 ◽  
Author(s):  
SÁNDOR KOVÁCS

In this paper we consider a model for the behavior of students in graduate programs at neighboring universities which is a modified form of the model proposed by [Scheurle & Seydel, 2000], and observe that the stationary solution of this two-component system becomes unstable in the presence of diffusion. We assume that both types of individuals are continuously distributed throughout a bounded two-dimensional spatial domain of two types (regular hexagon and rhombus), across whose boundaries there is no migration, and which simultaneously undergo simple (Fickian) diffusion but the spatial flow is influenced not only by its own but also by the other's density (cross diffusion). We will show that at a critical value of a parameter a Turing bifurcation takes place: a spatially nonhomogenous solution (pattern) arises.


Sign in / Sign up

Export Citation Format

Share Document