Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria

Microbiology ◽  
2011 ◽  
Vol 157 (12) ◽  
pp. 3256-3267 ◽  
Author(s):  
Morten Kjos ◽  
Juan Borrero ◽  
Mona Opsata ◽  
Dagim J. Birri ◽  
Helge Holo ◽  
...  

Due to their very potent antimicrobial activity against diverse food-spoiling bacteria and pathogens and their favourable biochemical properties, peptide bacteriocins from Gram-positive bacteria have long been considered promising for applications in food preservation or medical treatment. To take advantage of bacteriocins in different applications, it is crucial to have detailed knowledge on the molecular mechanisms by which these peptides recognize and kill target cells, how producer cells protect themselves from their own bacteriocin (self-immunity) and how target cells may develop resistance. In this review we discuss some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins. We also discuss some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriocins.

Author(s):  
Erum Malik ◽  
David A. Phoenix ◽  
Timothy J. Snape ◽  
Frederick Harris ◽  
Jaipaul Singh ◽  
...  

AbstractHere the hypothesis that linearized esculentin 2EM (E2EM-lin) from Glandirana emeljanovi possesses pH dependent activity is investigated. The peptide showed weak activity against Gram-negative bacteria (MLCs ≥ 75.0 μM) but potent efficacy towards Gram-positive bacteria (MLCs ≤ 6.25 μM). E2EM-lin adopted an α-helical structure in the presence of bacterial membranes that increased as pH was increased from 6 to 8 (↑ 15.5–26.9%), whilst similar increases in pH enhanced the ability of the peptide to penetrate (↑ 2.3–5.1 mN m−1) and lyse (↑ 15.1–32.5%) these membranes. Theoretical analysis predicted that this membranolytic mechanism involved a tilted segment, that increased along the α-helical long axis of E2EM-lin (1–23) in the N → C direction, with −  < µH > increasing overall from circa − 0.8 to − 0.3. In combination, these data showed that E2EM-lin killed bacteria via novel mechanisms that were enhanced by alkaline conditions and involved the formation of tilted and membranolytic, α-helical structure. The preference of E2EM-lin for Gram-positive bacteria over Gram-negative organisms was primarily driven by the superior ability of phosphatidylglycerol to induce α-helical structure in the peptide as compared to phosphatidylethanolamine. These data were used to generate a novel pore-forming model for the membranolytic activity of E2EM-lin, which would appear to be the first, major reported instance of pH dependent AMPs with alkaline optima using tilted structure to drive a pore-forming process. It is proposed that E2EM-lin has the potential for development to serve purposes ranging from therapeutic usage, such as chronic wound disinfection, to food preservation by killing food spoilage organisms.


2005 ◽  
Vol 187 (10) ◽  
pp. 3384-3390 ◽  
Author(s):  
Ivan Mijakovic ◽  
Lucia Musumeci ◽  
Lutz Tautz ◽  
Dina Petranovic ◽  
Robert A. Edwards ◽  
...  

ABSTRACT Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains one such CpsB-like PTP, YwqE, in addition to two class II Cys-based PTPs, YwlE and YfkJ. The substrates for both YwlE and YfkJ are presently unknown, while YwqE was shown to dephosphorylate two phosphotyrosine-containing proteins implicated in UDP-glucuronate biosynthesis, YwqD and YwqF. In this study, we characterize YwqE, compare the activities of the three B. subtilis PTPs (YwqE, YwlE, and YfkJ), and demonstrate that the two B. subtilis class II PTPs do not dephosphorylate the physiological substrates of YwqE.


2021 ◽  
Author(s):  
Shivalee N Duduskar ◽  
Mohamed Ghait ◽  
Martin Westermann ◽  
Huijuan Guo ◽  
Anuradha Ramoji ◽  
...  

Molecular mechanisms through which Gram-positive bacteria induce the canonical inflammasome are poorly understood. Here, we studied the effects of Group B streptococci (GBS) and Staphylococcus aureus (SA) on inflammasome activation in human macrophages. Dinucleotide binding small RNA aptamers released by SA and GBS were shown to trigger increased IL-1β generation by inflammasomes. The stimulator of interferon genes-STING as a central mediator of innate immune responses has been identified as the key target of pathogenic RNA. Multi-lamellar lipid bodies (MLBs) produced by SA function as vehicles for the RNA aptamers. Notably, expression of RNA aptamers is controlled by an accessory gene regulator quorum sensing system of the bacteria. These findings have been translated to patients with Gram-positive sepsis showing hallmarks of MLB-RNA-mediated inflammasome activation. Together our findings may provide a new perspective for the pathogenicity of Gram-positive bacterial infection in man.


2017 ◽  
Vol 5 (10) ◽  
Author(s):  
Jason M. Thomas ◽  
Natsinet Ghebrendrias ◽  
Mamta Rawat

ABSTRACT Here, we report the draft genome sequences of two Bacillus spore-forming Gram-positive bacteria, isolated from soil on the shore of Mono Lake.


2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Erwin M. Berendsen ◽  
Marjon H. J. Wells-Bennik ◽  
Antonina O. Krawczyk ◽  
Anne de Jong ◽  
Auke van Heel ◽  
...  

Here, we report the draft genomes of five strains of Geobacillus spp. , one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus , all thermophilic spore-forming Gram-positive bacteria.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
César Gago-Córdoba ◽  
Jorge Val-Calvo ◽  
David Abia ◽  
Alberto Díaz-Talavera ◽  
Andrés Miguel-Arribas ◽  
...  

ABSTRACT Conjugation, the process by which a DNA element is transferred from a donor to a recipient cell, is the main horizontal gene transfer route responsible for the spread of antibiotic resistance and virulence genes. Contact between a donor and a recipient cell is a prerequisite for conjugation, because conjugative DNA is transferred into the recipient via a channel connecting the two cells. Conjugative elements encode proteins dedicated to facilitating the recognition and attachment to recipient cells, also known as mating pair formation. A subgroup of the conjugative elements is able to mediate efficient conjugation during planktonic growth, and mechanisms facilitating mating pair formation will be particularly important in these cases. Conjugative elements of Gram-negative bacteria encode conjugative pili, also known as sex pili, some of which are retractile. Far less is known about mechanisms that promote mating pair formation in Gram-positive bacteria. The conjugative plasmid pLS20 of the Gram-positive bacterium Bacillus subtilis allows efficient conjugation in liquid medium. Here, we report the identification of an adhesin gene in the pLS20 conjugation operon. The N-terminal region of the adhesin contains a class II type thioester domain (TED) that is essential for efficient conjugation, particularly in liquid medium. We show that TED-containing adhesins are widely conserved in Gram-positive bacteria, including pathogens where they often play crucial roles in pathogenesis. Our study is the first to demonstrate the involvement of a class II type TED-containing adhesin in conjugation. IMPORTANCE Bacterial resistance to antibiotics has become a serious health care problem. The spread of antibiotic resistance genes between bacteria of the same or different species is often mediated by a process named conjugation, where a donor cell transfers DNA to a recipient cell through a connecting channel. The first step in conjugation is recognition and attachment of the donor to a recipient cell. Little is known about this first step, particularly in Gram-positive bacteria. Here, we show that the conjugative plasmid pLS20 of Bacillus subtilis encodes an adhesin protein that is essential for effective conjugation. This adhesin protein has a structural organization similar to adhesins produced by other Gram-positive bacteria, including major pathogens, where the adhesins serve in attachment to host tissues during colonization and infection. Our findings may thus also open novel avenues to design drugs that inhibit the spread of antibiotic resistance by blocking the first recipient-attachment step in conjugation.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Anoop Alex ◽  
Vijayakumari Pratheepa ◽  
Joana Martins ◽  
Agostinho Antunes

ABSTRACT We report here the genome sequences of six Vibrio strains isolated from an Atlantic intertidal marine sponge, Ophlitaspongia papilla. Genome mining and comparative genomics will assist in deciphering the bioactive potential of the symbiotic microbes and molecular mechanisms of sponge-microbial symbioses.


2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Lu Zhou ◽  
Chunxu Song ◽  
Anne de Jong ◽  
Oscar P. Kuipers

In order to investigate the underlying interaction mechanisms between plants and Gram-positive bacteria, 10 Paenibacillus and Bacillus strains were isolated from healthy tomato rhizosphere and plant tissues.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tatiana Tozar ◽  
Sofia Santos Costa ◽  
Ana-Maria Udrea ◽  
Viorel Nastasa ◽  
Isabel Couto ◽  
...  

Abstract Antibiotic resistance became an increasing risk for population health threatening our ability to fight infectious diseases. The objective of this study was to evaluate the activity of laser irradiated thioridazine (TZ) against clinically-relevant bacteria in view to fight antibiotic resistance. TZ in ultrapure water solutions was irradiated (1–240 min) with 266 nm pulsed laser radiation. Irradiated solutions were characterized by UV–Vis and FTIR absorption spectroscopy, thin layer chromatography, laser-induced fluorescence, and dynamic surface tension measurements. Molecular docking studies were made to evaluate the molecular mechanisms of photoproducts action against Staphylococcus aureus and MRSA. More general, solutions were evaluated for their antimicrobial and efflux inhibitory activity against a panel of bacteria of clinical relevance. We observed an enhanced antimicrobial activity of TZ photoproducts against Gram-positive bacteria. This was higher than ciprofloxacin effects for methicillin- and ciprofloxacin-resistant Staphylococcus aureus. Molecular docking showed the Penicillin-binding proteins PBP3 and PBP2a inhibition by sulforidazine as a possible mechanism of action against Staphylococcus aureus and MRSA strains, respectively. Irradiated TZ reveals possible advantages in the treatment of infectious diseases produced by antibiotic-resistant Gram-positive bacteria. TZ repurposing and its photoproducts, obtained by laser irradiation, show accelerated and low-costs of development if compared to chemical synthesis.


Sign in / Sign up

Export Citation Format

Share Document