scholarly journals Analysis of the genetic diversity and phylogenetic relationships of putative human papillomavirus types

2013 ◽  
Vol 94 (11) ◽  
pp. 2480-2488 ◽  
Author(s):  
Diego Chouhy ◽  
Elisa M. Bolatti ◽  
Germán R. Pérez ◽  
Adriana A. Giri

More than 170 human papillomavirus (HPV) types have been completely sequenced, curated and divided into five genera: Alphapapillomavirus, Betapapillomavirus, Gammapapillomavirus, Mupapillomavirus and Nupapillomavirus. With the application of PCR methods, hundreds of putative novel HPV types have been identified as PCR amplicons in mucosa and skin. However, at present there are no studies reporting a systematic search of the currently known L1 amplicons and their phylogenetic relationships. This survey revealed the existence of at least 202 different putative HPV types that are pending for full-genome characterization: five alphapapillomaviruses, 37 betapapillomaviruses, 159 gammapapillomaviruses and one mupapillomavirus. All potential viruses of the genera Alphapapillomavirus and Betapapillomavirus were grouped in the defined species, while 59 putative gammapapillomaviruses types were segregated in 21 unidentified putative species. These data highlight the need for progress in the identification of additional taxa of the family Papillomaviridae in order to elucidate the diversity, evolution and medical implications of these viruses.

2021 ◽  
Vol 27 ◽  
Author(s):  
Sayed Sartaj Sohrab ◽  
Sherif Aly El-Kafrawy ◽  
Aymn T. Abbas ◽  
Leena H. Bajrai ◽  
Esam Ibraheem Azhar

Background:: The unusual pneumonia outbreak that originated in the city of Wuhan, China in December 2019 was found to be caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or COVID-19. Methods:: In this work, we have performed an in silico design and prediction of potential siRNAs based on genetic diversity and recombination patterns, targeting various genes of SARS-CoV-2 for antiviral therapeutics. We performed extensive sequence analysis to analyze the genetic diversity and phylogenetic relationships, and to identify the possible source of virus reservoirs and recombination patterns, and the evolution of the virus as well as we designed the siRNAs which can be used as antivirals against SARS-CoV-2. Results:: The sequence analysis and phylogenetic relationships indicated high sequence identity and closed clusters with many types of coronavirus. In our analysis, the full-genome of SARS-CoV-2 showed the highest sequence (nucleotide) identity with SARS-bat-ZC45 (87.7%). The overall sequence identity ranged from 74.3% to 87.7% with selected SARS viruses. The recombination analysis indicated the bat SARS virus is a potential recombinant and serves as a major and minor parent. We have predicted 442 siRNAs and finally selected only 19 functional, and potential siRNAs. Conclusions:: The siRNAs were predicted and selected based on their greater potency and specificity. The predicted siRNAs need to be validated experimentally for their effective binding and antiviral activity.


2006 ◽  
Vol 87 (9) ◽  
pp. 2527-2531 ◽  
Author(s):  
Arvind Varsani ◽  
Eric van der Walt ◽  
Livio Heath ◽  
Edward P. Rybicki ◽  
Anna Lise Williamson ◽  
...  

An open question amongst papillomavirus taxonomists is whether recombination has featured in the evolutionary history of these viruses. Since the onset of the global AIDS epidemic, the question is somewhat less academic, because immune-compromised human immunodeficiency virus patients are often co-infected with extraordinarily diverse mixtures of human papillomavirus (HPV) types. It is expected that these conditions may facilitate the emergence of HPV recombinants, some of which might have novel pathogenic properties. Here, a range of rigorous analyses is applied to full-genome sequences of papillomaviruses to provide convincing statistical and phylogenetic evidence that evolutionarily relevant papillomavirus recombination can occur.


2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Ceyla Maria Oeiras Castro ◽  
Elaine Hellen Nunes Chagas ◽  
Delana Andreza Melo Bezerra ◽  
Sandro Patroca da Silva ◽  
Ana Cecília Ribeiro Cruz ◽  
...  

ABSTRACT Our results show the first full-genome characterization of avian nephritis virus 2 recovered from stools of broiler chickens at a commercial farm located in Benevides, Pará, Brazil. Nucleotide analyses of whole-genome sequences showed the isolate to be a strain of Avastrovirus 2 in the family Astroviridae.


2020 ◽  
Author(s):  
Suparat Taengchaiyaphum ◽  
Jiraporn Srisala ◽  
Piyachat Sanguanrut ◽  
Chalermporn Ongvarrasopone ◽  
Timothy W. Flegel ◽  
...  

ABSTRACTLaem Singh virus (LSNV) was discovered in 2006 and proposed as a necessary but insufficient cause of retarded growth in the giant tiger shrimp Penaeus monodon. Its closest relatives were plant viruses including an unassigned Sobemovirus and viruses in the family Luteoviridae. During succeeding years, attempts to obtain the full LSNV genome sequence by genome walking failed. However, recent publication of the full sequence of Wenzhou shrimp virus 9 (WZSV 9) at GenBank revealed that LSNV sequences in our database shared 99% sequence identity with it. Thus, we hypothesized that LSNV and WZSV 9 were different isolates of the same virus species. Here we confirm that hypothesis by cloning and sequencing of the full genome of LSNV from P. monodon and by showing that it consists of two fragments each with 99% identity to the matching fragments of WZSV.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
He-Teng Zhang ◽  
Hao Wang ◽  
Hai-Sheng Wu ◽  
Jian Zeng ◽  
Yan Yang

Abstract Background Although some studies have investigated the bacterial community in vaginal tract of pregnant women, there are few reports about the viral community (virome) in this type of microenvironment. Methods To investigate the composition of virome in vaginal secretion samples, 40 vaginal secretion samples from pregnant women with vaginitis and 20 vaginal secretion samples from pregnant women without vaginitis, pooled into 4 and 2 sample pools, respectively, were subjected to viral metagenomic analysis. Results Results indicated virus sequences showing similarity to human papillomavirus (HPV), anellovirus, and norovirus were recovered from this cohort of pregnant women. Further analysis indicated that 15 different defined types and one unclassified type of HPV were detected from pregnant women with vaginitis while only 3 defined types of HPV were detected in pregnant women without vaginitis. Five different groups of viruses from the family Anelloviridae were present in pregnant women with but none of them were detected in pregnant women without vaginitis. Norovirus was detected in 3 out of the 4 sample pools from pregnant women with vaginitis but none in the pregnant women without vaginitis. Twelve complete genomes belonging to 10 different types of HPV, and 5 novel anllovirus genomes belonging 2 different genera in Anelloviridae were acquired from these libraries, based on which phylogenetical analysis and pairwise sequence comparison were performed. Phageome in these samples was also briefly characterized and compared between two groups. Conclusion Our data suggested that virome might play an important role in the progression of vaginitis in pregnant women.


Author(s):  
Mohamed Abd. S. El zayat ◽  
Mahmoud El Sayd Ali ◽  
Mohamed Hamdy Amar

Abstract Background The Capparaceae family is commonly recognized as a caper, while Cleomaceae represents one of small flowering family within the order Brassicales. Earlier, Cleomaceae was included in the family Capparaceae; then, it was moved to a distinct family after DNA evidence. Variation in habits and a bewildering array of floral and fruit forms contributed to making Capparaceae a “trash-basket” family in which many unrelated plants were placed. Indeed, family Capparaceae and Cleomaceae are in clear need of more detailed systematic revision. Results Here, in the present study, the morphological characteristics and the ecological distribution as well as the genetic diversity analysis among the twelve species of both Capparaceae and Cleomaceae have been determined. The genetic analysis has been checked using 15 ISSR, 30 SRAP, and 18 ISTR to assess the systematic knots between the two families. In order to detect the molecular phylogeny, a comparative analysis of the three markers was performed based on the exposure of discriminating capacity, efficiency, and phylogenetic heatmap. Our results indicated that there is a morphological and ecological variation between the two families. Moreover, the molecular analysis confirmed that ISTR followed by SRAP markers has superior discriminating capacity for describing the genetic diversity and is able to simultaneously distinguish many polymorphic markers per reaction. Indeed, both the PCA and HCA data have drawn a successful annotation relationship in Capparaceae and Cleome species to evaluate whether the specific group sort individual or overlap groups. Conclusion The outcomes of the morphological and ecological characterization along with the genetic diversity indicated an insight solution thorny interspecies in Cleome and Gynandropsis genera as a distinct family (Cleomaceae) and the other genera (Capparis, Cadaba, Boscia, and Maerua) as Capparaceae. Finally, we recommended further studies to elucidate the systematic position of Dipterygium glaucum.


Sign in / Sign up

Export Citation Format

Share Document