scholarly journals Analysis of the Drosophila gypsy endogenous retrovirus envelope glycoprotein

2004 ◽  
Vol 85 (11) ◽  
pp. 3325-3331 ◽  
Author(s):  
Yolande Misseri ◽  
Martine Cerutti ◽  
Gérard Devauchelle ◽  
Alain Bucheton ◽  
Christophe Terzian

gypsy is the only endogenous retrovirus of Drosophila whose infectious properties have been reported. Previous studies have shown an unexpected relationship between the gene encoding the putative envelope glycoprotein (Env) of gypsy and genes encoding the fusion protein of several baculoviruses. The fact that fusion proteins mediate membrane fusion suggests that Env of insect retroviruses might also have fusogenic properties. The results reported here indicate that gypsy Env mediates cell-to-cell fusion. Cleavage of the Env precursor was also studied; it is shown that this polypeptide is cleaved at a furin-like cleavage site. This is the first report that the env-like gene of insect retroviruses encodes a fusion protein.

2004 ◽  
Vol 78 (8) ◽  
pp. 4342-4351 ◽  
Author(s):  
Jennifer A. Corcoran ◽  
Roy Duncan

ABSTRACT Reptilian reovirus is one of a limited number of nonenveloped viruses that are capable of inducing cell-cell fusion. A small, hydrophobic, basic, 125-amino-acid fusion protein encoded by the first open reading frame of a bicistronic viral mRNA is responsible for this fusion activity. Sequence comparisons to previously characterized reovirus fusion proteins indicated that p14 represents a new member of the fusion-associated small transmembrane (FAST) protein family. Topological analysis revealed that p14 is a representative of a minor subset of integral membrane proteins, the type III proteins Nexoplasmic/Ccytoplasmic (Nexo/Ccyt), that lack a cleavable signal sequence and use an internal reverse signal-anchor sequence to direct membrane insertion and protein topology. This topology results in the unexpected, cotranslational translocation of the essential myristylated N-terminal domain of p14 across the cell membrane. The topology and structural motifs present in this novel reovirus membrane fusion protein further accentuate the diversity and unusual properties of the FAST protein family and clearly indicate that the FAST proteins represent a third distinct class of viral membrane fusion proteins.


2008 ◽  
Vol 82 (18) ◽  
pp. 9245-9253 ◽  
Author(s):  
M. Umashankar ◽  
Claudia Sánchez-San Martín ◽  
Maofu Liao ◽  
Brigid Reilly ◽  
Alice Guo ◽  
...  

ABSTRACT The class II fusion proteins of the alphaviruses and flaviviruses mediate virus infection by driving the fusion of the virus membrane with that of the cell. These fusion proteins are triggered by low pH, and their structures are strikingly similar in both the prefusion dimer and the postfusion homotrimer conformations. Here we have compared cholesterol interactions during membrane fusion by these two groups of viruses. Using cholesterol-depleted insect cells, we showed that fusion and infection by the alphaviruses Semliki Forest virus (SFV) and Sindbis virus were strongly promoted by cholesterol, with similar sterol dependence in laboratory and field isolates and in viruses passaged in tissue culture. The E1 fusion protein from SFV bound cholesterol, as detected by labeling with photocholesterol and by cholesterol extraction studies. In contrast, fusion and infection by numerous strains of the flavivirus dengue virus (DV) and by yellow fever virus 17D were cholesterol independent, and the DV fusion protein did not show significant cholesterol binding. SFV E1 is the first virus fusion protein demonstrated to directly bind cholesterol. Taken together, our results reveal important functional differences conferred by the cholesterol-binding properties of class II fusion proteins.


2008 ◽  
Vol 83 (4) ◽  
pp. 1727-1741 ◽  
Author(s):  
Anuja Krishnan ◽  
Santosh K. Verma ◽  
Prashant Mani ◽  
Rahul Gupta ◽  
Suman Kundu ◽  
...  

ABSTRACT Most paramyxovirus fusion proteins require coexpression of and activation by a homotypic attachment protein, hemagglutinin-neuraminidase (HN), to promote membrane fusion. However, the molecular mechanism of the activation remains unknown. We previously showed that the incorporation of a monohistidylated lipid into F-virosome (Sendai viral envelope containing only fusion protein) enhanced its fusion to hepatocytes, suggesting that the histidine residue in the lipid accelerated membrane fusion. Therefore, we explored whether a histidine moiety in HN could similarly direct activation of the fusion protein. In membrane fusion assays, the histidine substitution mutants of HN (H247A of Sendai virus and H245A of human parainfluenza virus 3) had impaired membrane fusion promotion activity without significant changes in other biological activities. Synthetic 30-mer peptides corresponding to regions of the two HN proteins containing these histidine residues rescued the fusion promoting activity of the mutants, whereas peptides with histidine residues substituted by alanine did not. These histidine-containing peptides also activated F-virosome fusion with hepatocytes both in the presence and in the absence of mutant HN in the virosome. We provide evidence that the HN-mimicking peptides promote membrane fusion, revealing a specific histidine “switch” in HN that triggers fusion.


2021 ◽  
Author(s):  
Maximilian Flaiz ◽  
Gideon Ludwig ◽  
Frank R. Bengelsdorf ◽  
Peter Dürre

Abstract Background: The interest in using methanol as a substrate to cultivate acetogens increased in recent years since it can be sustainably produced from syngas and has the additional benefit of reducing greenhouse gas emissions. Eubacterium limosum is one of the few acetogens that can utilize methanol, is genetically accessible and, therefore, a promising candidate for the recombinant production of biocommodities from this C1 carbon source. Although several genetic tools are already available for certain acetogens including E. limosum, the use of brightly fluorescent reporter proteins is still limited.Results: In this study, we expanded the genetic toolbox of E. limosum by implementing the fluorescence-activating and absorption shifting tag (FAST) as a fluorescent reporter protein. Recombinant E. limosum strains that expressed the gene encoding FAST in an inducible and constitutive manner were constructed. Cultivation of these recombinant strains resulted in brightly fluorescent cells even under anaerobic conditions. Moreover, we produced the biocommodities butanol and acetone from methanol with recombinant E. limosum strains. Therefore, we used E. limosum cultures that produced FAST-tagged fusion proteins of the bifunctional acetaldehyde/alcohol dehydrogenase or the acetoacetate decarboxylase, respectively, and determined the fluorescence intensity and product yields during growth.Conclusions: The addition of FAST as an oxygen-independent fluorescent reporter protein expands the genetic toolbox of E. limosum. Moreover, our results show that FAST-tagged fusion proteins can be constructed without negatively impacting the stability, functionality, and productivity of the resulting enzyme. Finally, butanol and acetone can be produced from methanol using recombinant E. limosum strains expressing genes encoding fluorescent FAST-tagged fusion proteins.


2002 ◽  
Vol 9 (6) ◽  
pp. 1200-1204 ◽  
Author(s):  
Susana N. Diniz ◽  
Kátia C. Carvalho ◽  
Patrícia S. Cisalpino ◽  
José F. Silveira ◽  
Luiz R. Travassos ◽  
...  

ABSTRACT gp43 is the major diagnostic antigen of Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis (PCM) in humans. In the present study, cDNA of the gp43 gene (PbGP43) was obtained by reverse transcriptase PCR, inserted into a pGEX vector in frame with the glutathione S-transferase (GST) gene, and expressed in Escherichia coli as inclusion bodies. Immunoblotting showed that all sera from patients with chronic pulmonary and acute lymphatic forms of PCM reacted with the recombinant fusion protein of the mature gp43 (381 amino acids). Reactivity with fusion proteins containing subfragments of the N-terminal, internal, or C-terminal regions occurred eventually, and the C-terminal region was the most antigenic. Lack of reactivity with the subfragments may be due to the conformational nature of the gp43 epitopes. Sera from patients with aspergillosis, candidiasis, and histoplasmosis did not react with the gp43-GST fusion protein. Our results suggest that recombinant gp43 corresponding to the processed antigen can be a useful tool in the diagnosis of PCM.


2010 ◽  
Vol 84 (22) ◽  
pp. 11814-11821 ◽  
Author(s):  
Julia O. Jackson ◽  
Richard Longnecker

ABSTRACT Membrane fusion induced by enveloped viruses proceeds through the actions of viral fusion proteins. Once activated, viral fusion proteins undergo large protein conformational changes to execute membrane fusion. Fusion is thought to proceed through a “hemifusion” intermediate in which the outer membrane leaflets of target and viral membranes mix (lipid mixing) prior to fusion pore formation, enlargement, and completion of fusion. Herpes simplex virus type 1 (HSV-1) requires four glycoproteins—glycoprotein D (gD), glycoprotein B (gB), and a heterodimer of glycoprotein H and L (gH/gL)—to accomplish fusion. gD is primarily thought of as a receptor-binding protein and gB as a fusion protein. The role of gH/gL in fusion has remained enigmatic. Despite experimental evidence that gH/gL may be a fusion protein capable of inducing hemifusion in the absence of gB, the recently solved crystal structure of HSV-2 gH/gL has no structural homology to any known viral fusion protein. We found that in our hands, all HSV entry proteins—gD, gB, and gH/gL—were required to observe lipid mixing in both cell-cell- and virus-cell-based hemifusion assays. To verify that our hemifusion assay was capable of detecting hemifusion, we used glycosylphosphatidylinositol (GPI)-linked hemagglutinin (HA), a variant of the influenza virus fusion protein, HA, known to stall the fusion process before productive fusion pores are formed. Additionally, we found that a mutant carrying an insertion within the short gH cytoplasmic tail, 824L gH, is incapable of executing hemifusion despite normal cell surface expression. Collectively, our findings suggest that HSV gH/gL may not function as a fusion protein and that all HSV entry glycoproteins are required for both hemifusion and fusion. The previously described gH 824L mutation blocks gH/gL function prior to HSV-induced lipid mixing.


2000 ◽  
Vol 150 (1) ◽  
pp. 105-118 ◽  
Author(s):  
James A. McNew ◽  
Thomas Weber ◽  
Francesco Parlati ◽  
Robert J. Johnston ◽  
Thomas J. Melia ◽  
...  

Is membrane fusion an essentially passive or an active process? It could be that fusion proteins simply need to pin two bilayers together long enough, and the bilayers could do the rest spontaneously. Or, it could be that the fusion proteins play an active role after pinning two bilayers, exerting force in the bilayer in one or another way to direct the fusion process. To distinguish these alternatives, we replaced one or both of the peptidic membrane anchors of exocytic vesicle (v)- and target membrane (t)-SNAREs (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor) with covalently attached lipids. Replacing either anchor with a phospholipid prevented fusion of liposomes by the isolated SNAREs, but still allowed assembly of trans-SNARE complexes docking vesicles. This result implies an active mechanism; if fusion occurred passively, simply holding the bilayers together long enough would have been sufficient. Studies using polyisoprenoid anchors ranging from 15–55 carbons and multiple phospholipid-containing anchors reveal distinct requirements for anchors of v- and t-SNAREs to function: v-SNAREs require anchors capable of spanning both leaflets, whereas t-SNAREs do not, so long as the anchor is sufficiently hydrophobic. These data, together with previous results showing fusion is inhibited as the length of the linker connecting the helical bundle-containing rod of the SNARE complex to the anchors is increased (McNew, J.A., T. Weber, D.M. Engelman, T.H. Sollner, and J.E. Rothman, 1999. Mol. Cell. 4:415–421), suggests a model in which one activity of the SNARE complex promoting fusion is to exert force on the anchors by pulling on the linkers. This motion would lead to the simultaneous inward movement of lipids from both bilayers, and in the case of the v-SNARE, from both leaflets.


2004 ◽  
Vol 78 (11) ◽  
pp. 5996-6004 ◽  
Author(s):  
Maya Shmulevitz ◽  
Jennifer Corcoran ◽  
Jayme Salsman ◽  
Roy Duncan

ABSTRACT The p10 fusion-associated small transmembrane protein of avian reovirus induces extensive syncytium formation in transfected cells. Here we show that p10-induced cell-cell fusion is restricted by rapid degradation of the majority of newly synthesized p10. The small ectodomain of p10 targets the protein for degradation following p10 insertion into an early membrane compartment. Paradoxically, conservative amino acid substitutions in the p10 ectodomain hydrophobic patch that eliminate fusion activity also increase p10 stability. The small amount of p10 that escapes intracellular degradation accumulates at the cell surface in a relatively stable form, where it mediates cell-cell fusion as a late-stage event in the virus replication cycle. The unusual relationship between a nonstructural viral membrane fusion protein and the replication cycle of a nonenveloped virus has apparently contributed to the evolution of a novel mechanism for restricting the extent of virus-induced cell-cell fusion.


2020 ◽  
Vol 94 (14) ◽  
Author(s):  
Yuanmei Zhu ◽  
Danwei Yu ◽  
Hongxia Yan ◽  
Huihui Chong ◽  
Yuxian He

ABSTRACT The 2019 coronavirus disease (COVID-19), caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed serious threats to global public health and economic and social stabilities, calling for the prompt development of therapeutics and prophylactics. In this study, we first verified that SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as a cell receptor and that its spike (S) protein mediates high membrane fusion activity. The heptad repeat 1 (HR1) sequence in the S2 fusion protein of SARS-CoV-2 possesses markedly increased α-helicity and thermostability, as well as a higher binding affinity with its corresponding heptad repeat 2 (HR2) site, than the HR1 sequence in S2 of severe acute respiratory syndrome coronavirus (SARS-CoV). Then, we designed an HR2 sequence-based lipopeptide fusion inhibitor, termed IPB02, which showed highly potent activities in inhibiting SARS-CoV-2 S protein-mediated cell-cell fusion and pseudovirus transduction. IPB02 also inhibited the SARS-CoV pseudovirus efficiently. Moreover, the structure-activity relationship (SAR) of IPB02 was characterized with a panel of truncated lipopeptides, revealing the amino acid motifs critical for its binding and antiviral capacities. Therefore, the results presented here provide important information for understanding the entry pathway of SARS-CoV-2 and the design of antivirals that target the membrane fusion step. IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, presents a serious global public health emergency in urgent need of prophylactic and therapeutic interventions. The S protein of coronaviruses mediates viral receptor binding and membrane fusion, thus being considered a critical target for antivirals. Herein, we report that the SARS-CoV-2 S protein has evolved a high level of activity to mediate cell-cell fusion, significantly differing from the S protein of SARS-CoV that emerged previously. The HR1 sequence in the fusion protein of SARS-CoV-2 adopts a much higher helical stability than the HR1 sequence in the fusion protein of SARS-CoV and can interact with the HR2 site to form a six-helical bundle structure more efficiently, underlying the mechanism of the enhanced fusion capacity. Also, importantly, the design of membrane fusion inhibitors with high potencies against both SARS-CoV-2 and SARS-CoV has provided potential arsenals to combat the pandemic and tools to exploit the fusion mechanism.


2021 ◽  
Author(s):  
J. Lizbeth Reyes Zamora ◽  
Victoria Ortega ◽  
Gunner P. Johnston ◽  
Jenny Li ◽  
Hector C. Aguilar

Nipah virus (NiV) is a zoonotic bat henipavirus in the family Paramyxoviridae. NiV is deadly to humans, infecting host cells by direct fusion of the viral and host-cell plasma membranes. This membrane fusion process is coordinated by the receptor-binding attachment (G) and fusion (F) glycoproteins. Upon G-receptor binding, F fuses membranes via a cascade that sequentially involves F-triggering, fusion-pore formation, and viral or genome entry into cells. Using NiV as an important paramyxoviral model, we identified two novel regions in F that modulate the membrane fusion cascade. For paramyxoviruses and other viral families with class I fusion proteins, the HR1 and HR2 regions in the fusion protein pre-fusion conformation bind to form a six-helix bundle in the post-fusion conformation. Here, structural comparisons between the F pre-fusion and post-fusion conformations revealed that a short loop region (N1) undergoes dramatic spatial reorganization, and a short alpha helix (N4) undergoes secondary structural changes. The roles of the N1 and N4 regions during the membrane fusion cascade, however, remain unknown for henipaviruses and paramyxoviruses. By performing alanine scan mutagenesis and various functional analyses, we report that specific residues within these regions alter various steps in the membrane fusion cascade. While the N1 region affects early F-triggering, the N4 region affects F-triggering, F thermostability, and extensive fusion-pore expansion during syncytia formation, also uncovering a link between F/G interactions and F-triggering. These novel mechanistic roles expand our understanding of henipaviral and paramyxoviral F triggering, viral entry, and cell-cell fusion (syncytia), a pathognomonic feature of paramyxoviral infections. IMPORTANCE Henipaviruses infect bats, agriculturally important animals, and humans, with high mortality rates approaching ∼75% in humans. Known human outbreaks have concentrated in southeast Asia and Australia. Further, about 20 new henipaviral species have been recently discovered in bats, with geographical spans in Asia, Africa and South America. The development of antiviral therapeutics requires a thorough understanding of the mechanism of viral entry into host cells. In this study, we discovered novel roles of two regions within the fusion protein of the deadly henipavirus NiV. Such roles were in allowing viral entry into host cells and cell-cell fusion, a pathological hallmark of this and other paramyxoviruses. These novel roles were in the previously undescribed N1 and N4 regions within the fusion protein, modulating early and late steps of these important process of viral infection and henipaviral disease. Notably, this knowledge may apply to other henipaviruses and more broadly to other paramyxoviruses.


Sign in / Sign up

Export Citation Format

Share Document