scholarly journals Ectropis obliqua picorna-like virus IRES-driven internal initiation of translation in cell systems derived from different origins

2007 ◽  
Vol 88 (10) ◽  
pp. 2834-2838 ◽  
Author(s):  
Jie Lu ◽  
Yuanyang Hu ◽  
Liu Hu ◽  
Shan Zong ◽  
Dawei Cai ◽  
...  

Ectropis obliqua picorna-like virus (EoPV) is an insect RNA virus that causes a lethal granulosis infection of larvae of the tea looper (Ectropis obliqua). An internal ribosome entry site (IRES) mediates translation initiation of EoPV RNA. Here, bicistronic constructs were used to examine the 5′ untranslated region (UTR) of EoPV for IRES activity. The capacities of the EoPV 5′ UTR IRES and another insect virus IRES, the cricket paralysis virus intergenic region IRES, to mediate internal translation initiation in a variety of translation systems were also compared. The results demonstrated that the EoPV IRES functioned efficiently not only in mammalian cell-derived systems, but also in an insect cell-derived translation system. However, it functioned inefficiently in a plant cell-derived translation system. This study reveals the host preferences of the EoPV IRES and important differences in IRES function between the EoPV IRES and other characterized picorna-like insect viral IRESs.

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Encarnación Martínez-Salas ◽  
David Piñeiro ◽  
Noemí Fernández

The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. The majority of eukaryotic cellular mRNAs initiates translation by the cap-dependent or scanning mode of translation initiation, a mechanism that depends on the recognition of the m7G(5′)ppp(5′)N, known as the cap. However, mRNAs encoding proteins required for cell survival under stress bypass conditions inhibitory to cap-dependent translation; these mRNAs often harbor internal ribosome entry site (IRES) elements in their 5′UTRs that mediate internal initiation of translation. This mechanism is also exploited by mRNAs expressed from the genome of viruses infecting eukaryotic cells. In this paper we discuss recent advances in understanding alternative ways to initiate translation across eukaryotic organisms.


2007 ◽  
Vol 88 (11) ◽  
pp. 3043-3052 ◽  
Author(s):  
Emma C. Anderson ◽  
Sarah L. Hunt ◽  
Richard J. Jackson

Internal initiation of translation from the human rhinovirus-2 (HRV-2) internal ribosome entry site (IRES) is dependent upon host cell trans-acting factors. The multiple cold shock domain protein Unr and the polypyrimidine tract-binding protein have been identified as synergistic activators of HRV-2 IRES-driven translation. In order to investigate the mechanism by which Unr acts in this process, we have mapped the binding sites of Unr to two distinct secondary structure domains of the HRV-2 IRES, and have identified specific nucleotides that are involved in the binding of Unr to the IRES. The data suggest that Unr acts as an RNA chaperone to maintain a complex tertiary IRES structure required for translational competency.


2007 ◽  
Vol 27 (13) ◽  
pp. 4685-4697 ◽  
Author(s):  
Sergey E. Dmitriev ◽  
Dmitri E. Andreev ◽  
Ilya M. Terenin ◽  
Ivan A. Olovnikov ◽  
Vladimir S. Prassolov ◽  
...  

ABSTRACT Retrotransposon L1 is a mobile genetic element of the LINE family that is extremely widespread in the mammalian genome. It encodes a dicistronic mRNA, which is exceptionally rare among eukaryotic cellular mRNAs. The extremely long and GC-rich L1 5′ untranslated region (5′UTR) directs synthesis of numerous copies of RNA-binding protein ORF1p per mRNA. One could suggest that the 5′UTR of L1 mRNA contained a powerful internal ribosome entry site (IRES) element. Using transfection of cultured cells with the polyadenylated monocistronic (L1 5′UTR-Fluc) or bicistronic (Rluc-L1 5′UTR-Fluc) RNA constructs, capped or uncapped, it has been firmly established that the 5′UTR of L1 does not contain an IRES. Uncapping reduces the initiation activity of the L1 5′UTR to that of background. Moreover, the translation is inhibited by upstream AUG codons in the 5′UTR. Nevertheless, this cap-dependent initiation activity of the L1 5′UTR was unexpectedly high and resembles that of the beta-actin 5′UTR (84 nucleotides long). Strikingly, the deletion of up to 80% of the nucleotide sequence of the L1 5′UTR, with most of its stem loops, does not significantly change its translation initiation efficiency. These data can modify current ideas on mechanisms used by 40S ribosomal subunits to cope with complex 5′UTRs and call into question the conception that every long GC-rich 5′UTR working with a high efficiency has to contain an IRES. Our data also demonstrate that the ORF2 translation initiation is not directed by internal initiation, either. It is very inefficient and presumably based on a reinitiation event.


2005 ◽  
Vol 79 (15) ◽  
pp. 9842-9853 ◽  
Author(s):  
Renuka Pudi ◽  
Sudhamani S. Ramamurthy ◽  
Saumitra Das

ABSTRACT Human La protein is known to interact with hepatitis C virus (HCV) internal ribosome entry site (IRES) and stimulate translation. Previously, we demonstrated that mutations within HCV SL IV lead to reduced binding to La-RNA recognition motif 2 (RRM2) and drastically affect HCV IRES-mediated translation. Also, the binding of La protein to SL IV of HCV IRES was shown to impart conformational alterations within the RNA so as to facilitate the formation of functional initiation complex. Here, we report that a synthetic peptide, LaR2C, derived from the C terminus of La-RRM2 competes with the binding of cellular La protein to the HCV IRES and acts as a dominant negative inhibitor of internal initiation of translation of HCV RNA. The peptide binds to the HCV IRES and inhibits the functional initiation complex formation. An Huh7 cell line constitutively expressing a bicistronic RNA in which both cap-dependent and HCV IRES-mediated translation can be easily assayed has been developed. The addition of purified TAT-LaR2C recombinant polypeptide that allows direct delivery of the peptide into the cells showed reduced expression of HCV IRES activity in this cell line. The study reveals valuable insights into the role of La protein in ribosome assembly at the HCV IRES and also provides the basis for targeting ribosome-HCV IRES interaction to design potent antiviral therapy.


2008 ◽  
Vol 36 (4) ◽  
pp. 694-697 ◽  
Author(s):  
Eugenia S. Mardanova ◽  
Ludmila A. Zamchuk ◽  
Nikolai V. Ravin

A broad range of cellular stresses lead to the inhibition of translation. Despite this, some cellular mRNAs are selectively translated under these conditions. It is widely supposed that cap-independent internal initiation may maintain efficient translation of particular cellular mRNAs under a variety of stresses and other special conditions when cap-dependent protein synthesis is impaired. However, in spite of a large number of reports focused on the investigation of the regulation of IRES (internal ribosome entry site) activity in different tissues and under various stresses, only rarely is the real efficiency of IRES-driven translation in comparison with cap-dependent translation evaluated. When precisely measured, the efficiencies of candidate IRESs in most cases appeared to be very low and not sufficient to compensate for the reduction of cap-dependent initiation under stresses. The usually low efficiency of internal initiation of translation is inconsistent with postulated biological roles of IRESs.


2020 ◽  
Vol 48 (18) ◽  
pp. 10441-10455
Author(s):  
Risa Nobuta ◽  
Kodai Machida ◽  
Misaki Sato ◽  
Satoshi Hashimoto ◽  
Yasuhito Toriumi ◽  
...  

Abstract Comprehensive genome-wide analysis has revealed the presence of translational elements in the 3′ untranslated regions (UTRs) of human transcripts. However, the mechanisms by which translation is initiated in 3′ UTRs and the physiological function of their products remain unclear. This study showed that eIF4G drives the translation of various downstream open reading frames (dORFs) in 3′ UTRs. The 3′ UTR of GCH1, which encodes GTP cyclohydrolase 1, contains an internal ribosome entry site (IRES) that initiates the translation of dORFs. An in vitro reconstituted translation system showed that the IRES in the 3′ UTR of GCH1 required eIF4G and conventional translation initiation factors, except eIF4E, for AUG-initiated translation of dORFs. The 3′ UTR of GCH1-mediated translation was resistant to the mTOR inhibitor Torin 1, which inhibits cap-dependent initiation by increasing eIF4E-unbound eIF4G. eIF4G was also required for the activity of various elements, including polyU and poliovirus type 2, a short element thought to recruit ribosomes by base-pairing with 18S rRNA. These findings indicate that eIF4G mediates translation initiation of various ORFs in mammalian cells, suggesting that the 3′ UTRs of mRNAs may encode various products.


Sign in / Sign up

Export Citation Format

Share Document