scholarly journals Activation ofβ-Adrenoceptors by Dobutamine May Induce a Higher Expression of Peroxisome Proliferator-Activated Receptorsδ(PPARδ) in Neonatal Rat Cardiomyocytes

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ming-Ting Chou ◽  
Shih-Hsiang Lo ◽  
Kai-Chun Cheng ◽  
Yin-Xiao Li ◽  
Li-Jen Chen ◽  
...  

Recent evidence showed the role of peroxisome proliferator-activated receptors (PPARs) in cardiac function. Cardiac contraction induced by various agents is critical in restoring the activity of peroxisome proliferator-activated receptorsδ(PPARδ) in cardiac myopathy. Because dobutamine is an agent widely used to treat heart failure in emergency setting, this study is aimed to investigate the change of PPARδin response to dobutamine. Neonatal rat cardiomyocytes were used to examine the effects of dobutamine on PPARδexpression levels and cardiac troponin I (cTnI) phosphorylation via Western blotting analysis. We show that treatment with dobutamine increased PPARδexpression and cTnI phosphorylation in a time- and dose-dependent manner in neonatal rat cardiomyocytes. These increases were blocked by the antagonist ofβ1-adrenoceptors. Also, the action of dobutamine was related to the increase of calcium ions and diminished by chelating intracellular calcium. Additionally, dobutamine-induced action was reduced by the inhibition of downstream messengers involved in this calcium-related pathway. Moreover, deletion of PPARδusing siRNA generated the reduction of cTnI phosphorylation in cardiomyocytes treated with dobutamine. Thus, we concluded that PPARδis increased by dobutamine in cardiac cells.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jia-Wei Lin ◽  
Yih-Giun Cherng ◽  
Li-Jen Chen ◽  
Ho-Shan Niu ◽  
Chen Kuei Chang ◽  
...  

Ginseng has been shown to be effective on cardiac dysfunction. Recent evidence has highlighted the mediation of peroxisome proliferator-activated receptors (PPARs) in cardiac function. Thus, we are interested to investigate the role of PPARδin ginseng-induced modification of cardiac contractility. The isolated hearts in Langendorff apparatus and hemodynamic analysis in catheterized rats were applied to measure the actions of ginsengex vivoandin vivo. In normal rats, ginseng enhanced cardiac contractility and hemodynamicdP/dtmaxsignificantly. Both actions were diminished by GSK0660 at a dose enough to block PPARδ. However, ginseng failed to modify heart rate at the same dose, although it did produce a mild increase in blood pressure. Data of intracellular calcium level and Western blotting analysis showed that both the PPARδexpression and troponin I phosphorylation were raised by ginseng in neonatal rat cardiomyocyte. Thus, we suggest that ginseng could enhance cardiac contractility through increased PPARδexpression in cardiac cells.


2007 ◽  
pp. 559-569
Author(s):  
X Gao ◽  
X Xu ◽  
J Pang ◽  
C Zhang ◽  
JM Ding ◽  
...  

Glutamate is a well-characterized excitatory neurotransmitter in the central nervous system (CNS). Recently, glutamate receptors (GluRs) were also found in peripheral tissues, including the heart. However, the function of GluRs in peripheral organs remains poorly understood. In the present study, we found that N-methyl-D-aspartate (NMDA) could increase intracellular calcium ([Ca(2+)]i) level in a dose-dependent manner in cultured neonatal rat cardiomyocytes. NMDA at 10(-4) M increased the levels of reactive oxygen species (ROS), cytosolic cytochrome c (cyto c), and 17-kDa caspase-3, but depolarized mitochondrial membrane potential, leading to cardiomyocyte apoptosis. In addition, NMDA treatment induced an increase in bax mRNA but a decrease in bcl-2 mRNA expression in the cardiomyocytes. The above effects of NMDA were blocked by the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), and by ROS scavengers glutathione (GSH) and N-acetylcystein (NAC). These results suggest that stimulation of NMDA receptor in the cardiomyocyte may lead to apoptosis via a Ca(2+), ROS, and caspase-3 mediated pathway. These findings suggest that NMDA receptor may play an important role in myocardial pathogenesis.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Guoliang Meng ◽  
Liping Xie ◽  
Yong Ji

Rationale: H 2 S is a gasotransmitter that regulates multiple cardiovascular functions. Krüppel-like transcription factor (KLF) exerts diverse functions in the cardiovascular system. Objectives: The aim of present study was to investigate the effect of hydrogen sulfide (H 2 S) on myocardial hypertrophy. Methods and results: Myocardial samples of 22 patients with left ventricle hypertrophy were collected and underwent histological and molecular biological analysis. Spontaneously hypertensive rats (SHR) and neonatal rat cardiomyocytes were studied for functional and signaling response to GYY4137, a H 2 S-releasing compound. Expression of cystathionine -lyase (CSE), a main enzyme for H 2 S generation in human heart, decreased in human hypertrophic myocardium, while KLF5 expression increased. In SHR treated with GYY4137 for 4 weeks, myocardial hypertrophy was inhibited as evidenced by improvement in cardiac structural parameters, heart mass index, size of cardiac myocytes and expression of atrial natriuretic peptide (ANP). Levels of oxidative stress and phosphorylation of mitogen-activated protein kinases were also decreased after H 2 S treatment. H 2 S diminished expression of the KLF5 in myocardium of SHR and in neonatal rat cardiomyocytes rendered hypertrophy by angiotensin II (Ang II). H 2 S also inhibited ANP promoter activity and ANP expression in Ang II-induced neonatal rat cardiomyocyte hypertrophy, and these effects were suppressed by KLF5 knockdown. KLF5 promoter activity was increased by Ang II stimulation, and this was reversed by H 2 S. H 2 S also decreased activity of specificity protein-1 (SP-1) binding to the KLF5 promoter and attenuated KLF5 nuclear translocation by Ang II stimulation. Conclusion: H 2 S attenuated myocardial hypertrophy, which might be related to inhibiting oxidative stress and decreasing ANP transcription activity in a KLF5-dependent manner.


2021 ◽  
Vol 8 ◽  
Author(s):  
Bingdong Tao ◽  
Santosh Kumar ◽  
Jose Gomez-Arroyo ◽  
Chunling Fan ◽  
Ailan Zhang ◽  
...  

Heart (right) failure is the most frequent cause of death in patients with pulmonary arterial hypertension. Although historically, increased right ventricular afterload has been considered the main contributor to right heart failure in such patients, recent evidence has suggested a potential role of load-independent factors. Here, we tested the hypothesis that resistin–like molecule α (RELMα), which has been implicated in the pathogenesis of vascular remodeling in pulmonary artery hypertension, also contributes to cardiac metabolic remodeling, leading to heart failure. Recombinant RELMα (rRELMα) was generated via a Tet-On expression system in the T-REx 293 cell line. Cultured neonatal rat cardiomyocytes were treated with purified rRELMα for 24 h at a dose of 50 nM. Treated cardiomyocytes exhibited decreased mRNA and protein expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) and transcription factors PPARα and ERRα, which regulate mitochondrial fatty acid metabolism, whereas genes that encode for glycolysis-related proteins were significantly upregulated. Cardiomyocytes treated with rRELMα also exhibited a decreased basal respiration, maximal respiration, spare respiratory capacity, ATP-linked OCR, and increased glycolysis, as assessed with a microplate-based cellular respirometry apparatus. Transmission electron microscopy revealed abnormal mitochondrial ultrastructure in cardiomyocytes treated with rRELMα. Our data indicate that RELMα affects cardiac energy metabolism and mitochondrial structure, biogenesis, and function by downregulating the expression of the PGC-1α/PPARα/ERRα axis.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Xu Yan ◽  
Jinrong Xue ◽  
Hongjin Wu ◽  
Shengqi Wang ◽  
Yuna Liu ◽  
...  

Ginsenoside (GS-Rb1) is one of the most important active compounds of ginseng, with extensive evidence of its cardioprotective properties. However, the miRNA mediated mechanism of GS-Rb1 on cardiomyocytes remains unclear. Here, the roles of miRNAs in cardioprotective activity of GS-Rb1 were investigated in hypoxic- and ischemic-damaged cardiomyocytes. Neonatal rat cardiomyocytes (NRCMs) were first isolated, cultured, and then incubated with or without GS-Rb1 (2.5–40μM)in vitrounder conditions of hypoxia and ischemia. Cell growth, proliferation, and apoptosis were detected by MTT and flow cytometry. Expressions of various microRNAs were analyzed by real-time PCR. Compared with that of the control group, GS-Rb1 significantly decreased cell death in a dose-dependent manner and expressions of mir-1, mir-29a, and mir-208 obviously increased in the experimental model groups. In contrast, expressions of mir-21 and mir-320 were significantly downregulated and GS-Rb1 could reverse the differences in a certain extent. The miRNAs might be involved in the protective effect of GS-Rb1 on the hypoxia/ischemia injuries in cardiomyocytes. The effect might be based on the upregulation of mir-1, mir-29a, and mir-208 and downregulation of mir-21 and mir-320. This might provide us a new target to explore the novel strategy for ischemic cardioprotection.


Sign in / Sign up

Export Citation Format

Share Document