scholarly journals Polar Organic Pollutants in Groundwater: Experimental Approaches to Biodegradation During Subsoil Passage

2002 ◽  
Vol 2 ◽  
pp. 1243-1246
Author(s):  
T.P. Knepper

A selection of polar organic compounds was investigated for their biodegradation on a laboratory scale fixed-bed bioreactor and the decline of the parent compounds besides the formation of metabolites was monitored. Of particular interest was the investigation into the degradation of pesticides, especially isoproturon (IPU), surfactants and industrial by-products of chemical synthesis. The results from the laboratory degradation experiments are compared to findings in groundwater.

Author(s):  
Dennis G. Peters ◽  
Caitlyn M. McGuire ◽  
Erick M. Pasciak ◽  
Angela A. Peverly ◽  
Lauren M. Strawsine ◽  
...  

<p>This review summarizes our own research, published since 2004, dealing with electrochemical reduction of halogenated organic compounds that are environmental pollutants. Included are sections surveying the direct and mediated reduction of the following species: (a) chlorofluorocarbons; (b) pesticides, fungicides, and bactericides; (c) flame retardants; and (d) disinfection by-products arising from the chlorination of water. To provide the reader with a perspective of these topics beyond our own work, a total of 238 literature citations, pertaining to studies conducted in numerous laboratories around the world, appears at the end of this review.</p>


2021 ◽  
Vol 244 ◽  
pp. 117923
Author(s):  
Ambarish Pokhrel ◽  
Kimitaka Kawamura ◽  
Eri Tachibana ◽  
Bhagawati Kunwar ◽  
Kazuma Aoki

Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Esther Borrás ◽  
Luis Antonio Tortajada-Genaro ◽  
Francisco Sanz ◽  
Amalia Muñoz

The chemical characterization of aerosols, especially fine organic fraction, is a relevant atmospheric challenge because their composition highly depends on localization. Herein, we studied the concentration of multi-oxygenated organic compounds in the western Mediterranean area, focusing on sources and the effect of air patterns. The organic aerosol fraction ranged 3–22% of the total organic mass in particulate matter (PM)2.5. Seventy multi-oxygenated organic pollutants were identified by gas chromatography–mass spectrometry, including n-alkanones, n-alcohols, anhydrosugars, monocarboxylic acids, dicarboxylic acids, and keto-derivatives. The highest concentrations were found for carboxylic acids, such as linoleic acid, tetradecanoic acid and, palmitic acid. Biomarkers for vegetation sources, such as levoglucosan and some fatty acids were detected at most locations. In addition, carboxylic acids from anthropogenic sources—mainly traffic and cooking—have been identified. The results indicate that the organic PM fraction in this region is formed mainly from biogenic pollutants, emitted directly by vegetation, and from the degradation products of anthropogenic and biogenic volatile organic pollutants. Moreover, the chemical profile suggested that this area is interesting for aerosol studies because several processes such as local costal breezes, industrial emissions, and desert intrusions affect fine PM composition.


2021 ◽  
Vol 129 ◽  
pp. 26-34
Author(s):  
Werner Berg ◽  
Razieh Salamat ◽  
Holger Scaar ◽  
Jochen Mellmann

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 677
Author(s):  
Muhammad Tahir Khan ◽  
Johannes Krümpel ◽  
Dominik Wüst ◽  
Andreas Lemmer

Production of bio-based materials in biorefineries is coupled with the generation of organic-rich process-wastewater that requires further management. Anaerobic technologies can be employed as a tool for the rectification of such hazardous by-products. Therefore, 5-hydroxymethylfurfural process-wastewater and its components were investigated for their biodegradability in a continuous anaerobic process. The test components included 5-hydroxymethylfurfural, furfural, levulinic acid, and the full process-wastewater. Each component was injected individually into a continuously operating anaerobic filter at a concentration of 0.5 gCOD. On the basis of large discrepancies within the replicates for each component, we classified their degradation into the categories of “delayed”, “retarded”, and “inhibitory”. Inhibitory represented the replicates for all the test components that hampered the process. For the retarded degradation, their mean methane yield per 0.5 gCOD was between 21.31 ± 13.04 mL and 28.98 ± 25.38 mL. Delayed digestion was considered adequate for further assessments in which the order of conversion to methane according to specific methane yield for each component from highest to lowest was as follows: levulinic acid > furfural > 5-hydroxymethylfurfural > process-wastewater. Disparities and inconsistencies in the degradation of process-wastewater and its components can compromise process stability as a whole. Hence, the provision of energy with such feedstock is questionable.


2019 ◽  
Vol 11 (23) ◽  
pp. 2952-2959 ◽  
Author(s):  
Jessica Pandohee ◽  
Robert J. Rees ◽  
Michelle J. S. Spencer ◽  
Aaron Raynor ◽  
Oliver A. H. Jones

This paper outlines a protocol, which combines quantum mechanics calculations and experimental synthesis, to enable systematic selection of suitable chromophores based on their stability of fluorescence and efficiency of the chemical reaction.


Sign in / Sign up

Export Citation Format

Share Document