scholarly journals Inhibition of protein translation by the DISC1-Boymaw fusion gene from a Scottish family with major psychiatric disorders

2014 ◽  
Author(s):  
Baohu Ji ◽  
Kerin K. Higa ◽  
Minjung Kim ◽  
Lynn Zhou ◽  
Jared W. Young ◽  
...  

AbstractThe t(1; 11) translocation appears to be the causal genetic lesion with 70% penetrance for schizophrenia, major depression, and other psychiatric disorders in a Scottish family. Molecular studies identified the disruption of the DISC1 (disrupted-in-schizophrenia 1) gene by chromosome translocation at chromosome 1q42. Our previous studies, however, revealed that the translocation also disrupted another gene, Boymaw (also termed DISC1FP1), on chromosome 11. After translocation, two fusion genes (the DISC1-Boymaw (DB7) and the Boymaw-DISC1 (BD13)) are generated between the DISC1 and Boymaw genes. In the present study, we report that expression of the DB7 fusion gene inhibits both intracellular NADH oxidoreductase activities and protein translation. We generated humanized DISC1-Boymaw mice with gene targeting to examine the in vivo functions of the fusion genes. Consistent with the in vitro studies on the DB7 fusion gene, protein translation activity is decreased in the hippocampus and in cultured primary neurons from the brains of the humanized mice. Expression of Gad67, Nmdar1, and Psd95 proteins are also reduced. The humanized mice display prolonged and increased responses to the NMDA receptor antagonist, ketamine, on various mouse genetic backgrounds. Abnormal information processing of acoustic startle and depressive-like behaviors are also observed. In addition, the humanized mice display abnormal erythropoiesis, which was reported to associate with depression in humans. Expression of the DB7 fusion gene may reduce protein translation to impair brain functions and thereby contribute to the pathogenesis of major psychiatric disorders.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 767-767
Author(s):  
Christian Elling ◽  
Philipp Erben ◽  
Christoph Walz ◽  
Marie Frickenhaus ◽  
Mirle Schemionek ◽  
...  

Abstract Abstract 767 Considerable progress has been achieved in our understanding of the pathogenesis of hypereosinophilic syndrome (HES) and chronic eosinophilic leukemia (CEL) by identification of constitutively activated tyrosine kinase fusion genes, e.g. FIP1L1-PDGFRA or ETV6-PDGFRB. However, the overall incidence of those fusion genes in HES/CEL is below 15%, and the molecular pathogenesis of the remaining cases remains elusive. We therefore established generic quantitative RT-PCR assays (RQ-PCR) to detect overexpression of 3'-regions of PDGFRA or PDGFRB as a possible indicator of an underlying fusion gene or point mutation. Patients with known fusion genes involving PDGFRA (n=5, 51 patients) or PDGFRB (n=5; 7 patients) showed significantly increased normalized expression levels compared to 191 patients with fusion gene-negative eosinophilia or healthy individuals (PDGFRA/ABL: 0.73 vs. 0.0066 vs. 0.0064, p<0.0001; PDGFRB/ABL: 196 vs. 3.8 vs. 5.85, p<0.0001). In all patients with significantly increased expression levels who were negative for fusion genes, functionally relevant regions of PDGFRA were sequenced. Several novel mutations (R481G, I562M, H570R, M628T, L705P, G729D) as well as a double mutation (H650Q and R748G) were identified. When cloned into 32D cells, M628T, H650Q, and R748G mutants separately induced growth factor-independent proliferation and clonogenic growth, and this was associated with constitutive phosphorylation of downstream targets STAT5, ERK, and AKT. Low doses of imatinib antagonized all of these effects in vitro. M628T and R748G but not H650Q 32D cell mutants induced acute leukemia after injection into congenic C3H/HeJ mice, similar to FIP1L1-PDGFRA. Interestingly, these two mutants showed a significantly higher propensity to invade the lymph nodes than the FIP1L1-PDGFRA fusion. Oral administration of imatinib to injected mice significantly decreased leukemic growth in vivo and significantly prolonged survival of the recipients. In conclusion, we demonstrate that novel point mutations of the PDGFRA gene found in patients with HES/CEL induce growth factor independence and leukemia in vitro and in vivo and suggest that these patients may benefit from treatment with imatinib. *CE, PE, AR, and SK contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Author(s):  
Baohu Ji ◽  
Minjung Kim ◽  
Kerin K. Higa ◽  
Xianjin Zhou

AbstractThe t(1,11) chromosome translocation co-segregates with major psychiatric disorders in a large Scottish family. The translocation disrupts the DISC1 and Boymaw (DISC1FP1) genes on chromosomes 1 and 11, respectively. After translocation, two fusion genes are generated. Our recent studies found that the DISC1-Boymaw fusion protein is localized in mitochondria and inhibits oxidoreductase activity, rRNA expression, and protein translation. Mice carrying the DISC1-Boymaw fusion genes display intermediate behavioral phenotypes related to major psychiatric disorders. Here, we report that the Boymaw gene encodes a small protein predominantly localized in mitochondria. The Boymaw protein inhibits oxidoreductase activity, rRNA expression, and protein translation in the same way as the DISC1-Boymaw fusion protein. Interestingly, Boymaw expression is up-regulated by different stressors at RNA and/or protein translational levels. In addition, we found that Boymaw RNA expression is significantly increased in the postmortem brains of patients with major psychiatric disorders. Our studies therefore suggest that the Boymaw gene is a potential susceptibility gene for major psychiatric disorders in both the Scottish t(1,11) family and the general population of patients.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 304-304 ◽  
Author(s):  
Kazutsune Yamagata ◽  
Yukiko Aikawa ◽  
Mika Shino ◽  
Issay Kitabayashi

Abstract Chromosome translocation involving the mixed lineage leukemia (MLL) gene which generates an in-frame fusion gene of the MLL 5′-region and partner genes, is a common rearrangement in acute myeloid and lymphoid leukemia that is associated with poor prognosis. Knock-in and retroviral transduction studies show that MLL-fusion results in constitutive activation of the transcription of target genes such as Hoxa9 and Meis1 during the development of leukemia. Recent studies show that several transcription regulators, such as Dot1L, Cbx8, PAF1, and AEP/EAP complexes, are required for the leukemogenic activity of MLL-fusion; however, the underlying mechanisms remain elusive. To clarify the mechanism of epigenetic regulation by MLL-fusions, we established a novel leukemia model by generating a conditional MLL-AF10 fusion gene, MLL-AF10 flox, in which the 3′-AF10 region is deleted by 4-OHT-activated Cre-ERT recombinase, resulting in inactivation of MLL-AF10 flox (Figure 1A). Mouse hematopoietic stem/progenitor cells (c-kit+) were immortalized by retroviral transduction of MLL-AF10 flox and cultured in vitro or transplanted into irradiated recipient mice to induce AML in vivo. Treatment of MLL-AF10 flox cells with 4-OHT in vitro to inactivate MLL-AF10 flox downregulated Hoxa9 expression and markedly decreased colony-forming ability. In addition, the inactivation of MLL-AF10 flox rapidly decreased the acetylation level of the histone H2A variant H2A.Z on the Hoxa9 locus. These results suggest that MLL-AF10, possibly together with a histone acetyltransferase (HAT), regulates the acetylation of H2A.Z on the Hoxa9 locus. To identify the HAT responsible for H2A.Z acetylation induced by MLL-AF10, protein complexes associated with H2A.Z-containing nucleosomes were purified, resulting in the identification of Tip60, a MYST-type HAT in a complex with H2A.Z. MLL-AF10 physically interacted with Tip60 via the AF10 C-terminal portion of MLL-AF10 (Figure 1B). ChIP analysis showed that MLL-AF10 and Tip60 co-localize on the Hoxa9 locus in MLL-AF10-transformed cells (MLL-AF10 cells). Furthermore, conditional deletion of Tip60 in MLL-AF10 (Tip60 Flox/Flox, Cre-ERT2) cells dramatically downregulated Hoxa9 expression and resulted in the accumulation of unacetylated H2A.Z on the Hoxa9 locus. Consistent with these data, in vitro acetylation analysis showed that Tip60 directly acetylates H2A.Z. To assess the role of Tip60 in leukemia development in vivo, MLL-AF10 (Tip60 Flox/Flox, Cre-ERT2) leukemia cells were injected into recipient mice. Animals receiving intraperitoneal injection of tamoxifen to delete Tip60 failed to develop MLL-AF10 leukemia (Figure 1C). These data indicate that Tip60 is required for the development of MLL-AF10 leukemia and suggest that MLL-AF10 recruits Tip60 to acetylate H2A.Z on the Hoxa9 locus. The effect of H2A.Z acetylation on Hoxa9 expression was examined by purifying nucleosomes containing acetylation-deficient 3KR H2A.Z (which mimics unacetylated H2A.Z), in which lysines 4, 7, and 11 were substituted by arginine. 3KR H2A.Z preferentially formed nucleosomes with histone H3 trimethylation at lysine 27, which is catalyzed by polycomb repressive complex 2 (PRC2). This finding suggests that nucleosomes including unacetylated H2A.Z are the preferential targets of PRC2. Loss of Tip60 in MLL-AF10 cells resulted in decreased levels of acetylated H2A.Z on the Hoxa9 locus and the recruitment of Ezh2 (a catalytic subunit of PRC2) and increased histone H3 K27 trimethylation. Taken together, these data indicate that Tip60 is a critical factor in the development of MLL-AF10 leukemia. MLL-AF10 may maintain an active chromatin state on its target genesby recruiting Tip60, which acetylates H2A.Z to prevent PRC2 recruitment and gene silencing. On the other hand, unacetylated H2A.Z may be a signal for PRC2 recruitment, which would be induced as a result of Tip60 loss or inactivation of MLL-AF10. Figure 1. Figure 1. Disclosures Kitabayashi: Daiichi Sankyo Co., Ltd.: Research Funding.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 148-148 ◽  
Author(s):  
Tillmann Taube ◽  
Shabnam Shalapour ◽  
Georg J. Seifert ◽  
Madlen Pfau ◽  
Guenter Henze ◽  
...  

Abstract The BCR-ABL fusion protein p190 resulting from the translocation t(9;22) exhibits dysregulated tyrosine kinase activity and was shown to cause acute lymphoblastic leukemia (ALL). Detection of the BCR-ABL fusion gene in childhood ALL is associated with an adverse prognosis and defines a group of high risk patients. Because the BCR-ABL gene fusion is specific for leukemic cells it represents an ideal target for leukemia specific treatment approaches. Catalytic DNAzymes are able to cleave mRNA in a sequence specific manner, causing inhibition of protein translation from the DNAzyme targeted mRNA both in vitro and in vivo. In order to cut off the BCR-ABL driven malignant proliferation, we designed DNAzymes to impede the expression of p190 BCR-ABL by cleaving the BCR-ABL mRNA adjacent to the fusion site. One construct was found that cleaved the target mRNA efficiently and specifically leaving BCR and ABL, relevant for normal cell survival and proliferation, unaffected. Activity and specificity of the BCR-ABL DNAzyme was investigated in cleavage assays with in vitro transcribed BCR-ABL, BCR and ABL mRNA. DNAzymes were delivered to cultured BCR-ABL+ ALL cells by lipid transfection. The efficiency of cellular delivery reached 90% as studied by flow cytometry, fluorescence microscopy and confocal microscopy after transfection of FITC labeled DNAzymes. To control for unspecific effects of DNAzyme delivery as well as for antisense effects, a catalytically inactive DNAzyme still exhibiting BCR-ABL antisense activity was designed. Fourty-eight hours after a single treatment of BCR-ABL+ ALL-cells with DNAyzmes the BCR-ABL mRNA concentration, as measured by quantitative real-time RT-PCR, was significantly reduced by 56% and 66% compared to controls treated with the inactivated DNAzyme and to untreated cells, respectively. Western blot analysis showed a decrease in p190 protein levels after DNAzyme treatment in comparison to the control treated with inactive DNAzyme as well as to the untreated cells. Most noteworthy, four days after a single DNAzyme treatment the net growth of BCR-ABL+ ALL cells treated with the active DNAzyme was inhibited by 68% compared to the untreated control. From these data we conclude, firstly, DNAzymes targeting mRNA coding for the minor BCR-ABL variant are able to significantly reduce the amount of fusion mRNA in the cells, leading to a reduction in protein expression, followed by the inhibition of BCR-ABL driven proliferation of ALL cells. Secondly, this exemplified setting gives a hint that DNAzymes might be of therapeutic use in hematopoietic malignancies associated with specific mutations, expressing oncogenic fusion genes or overexpressing oncogenic genes.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii314-iii315
Author(s):  
Mutsumi Takadera ◽  
Tatsuya Ozawa ◽  
Kaishi Satomi ◽  
Tetsuya Yamamoto ◽  
Koichi Ichimura

Abstract Recent large-scale genomic studies of ependymal tumors have identified recurrent RELA and YAP1 fusion genes in supratentorial ependymomas. The formation of the C11orf95-RELA fusion gene has been attributed to massive genomic rearrangement involving chromosome 11q termed Chromothripsis in many cases. However, the causal relationship has not been clarified experimentally. In this study, we developed a system to reproduce the oncogenic gene rearrangement using the CRISPR-Cas9 system and examined whether consequent endogenous ependymoma fusion genes are competent to form brain tumors in mice. Initially, to investigate whether C11orf95-RELA fusion can be formed by inducing the relevant gene rearrangement in vitro, we designed multiple guide RNAs on the human and mouse genomic loci and introduced them into cultured cells. RT-PCR and immunoblot analyses detected endogenous C11orf95-RELA fusion transcript and protein in both human and mouse cultured cells. Subsequently, we lentivirally introduced the gRNAs into a mouse brain. Brain tumor formation was observed from around 2 months after the lentivirus injection, thus indicating successful gene rearrangement followed by C11orf95-RELA fusion expression in vivo. Analysis of the tumor tissue confirmed the expression of the endogenous C11orf95-RELA fusion gene. These results suggested that a gene rearrangement is a primary mechanism to form the C11orf95-RELA fusion which is the direct driver of tumorigenesis. Our system to simulate a genomic event will provide significant insights into the understanding of the tumorigenic mechanism in ependymomas.


Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


Author(s):  
Liqing Jia ◽  
Xiaolu Ge ◽  
Chao Du ◽  
Linna Chen ◽  
Yanhong Zhou ◽  
...  

Abstract Background Eukaryotic protein translation elongation factor 1α2 (EEF1A2) is an oncogene that promotes the progression of breast and pancreatic cancer. In this study, we aimed to elucidate the oncogenic function of EEF1A2 in the metastasis of lung adenocarcinoma (LUAD). Methods Immunohistochemistry and western blot were used to study EEF1A2 expression levels in LUAD tissues and cells, respectively. The role of EEF1A2 in LUAD progression were investigated in vitro and in vivo. We identified potential EEF1A2-binding proteins by liquid chromatography-electrospray mass spectrometry (LC-MS)/MS. Protein–protein interactions were determined by immunofluorescence and co-immunoprecipitation (Co-IP). Results In this study, we report that EEF1A2 mediates the epithelial–mesenchymal transformation (EMT), to promote the metastasis of LUAD cells in vitro and in vivo. Moreover, EEF1A2 interacts with HSP90AB1 to increase TGFβ Receptor (TβR)-I, and TβRII expression, followed by enhanced SMAD3 and pSMAD3 expression and nuclear localisation, which promotes the EMT of LUAD cells. Overexpression of EEF1A2 in cancer tissues is associated with poor prognosis and short survival of patients with LUAD. Conclusions These findings underscore the molecular functions of EEF1A2 in LUAD metastasis and indicate that EEF1A2 represents a promising target in the treatment of aggressive LUAD.


Folia Medica ◽  
2014 ◽  
Vol 56 (4) ◽  
pp. 289-296
Author(s):  
Jakob Korf

Abstract Qualia are private conscious experiences of which the associated feelings can be reported to other people. Whether qualia are amenable to scientific exploration has often been questioned, which is challenged by the present article. The following arguments are given: 1. the configuration of the brain changes continuously and irreversibly, because of genetic and environmental influences and interhuman communication; 2. qualia and consciousness are processes, rather than states; 3. private feelings, including those associated with qualia, should be positioned in the context of a personal brain as being developed during life; 4. consciousness and qualia should be understood in the context of general system theory, thus concluding that isolated, in vitro, properties of neurons and other brain constituents might marginally contribute to the understanding of higher brain functions, mind or qualia; 5. current in vivo approaches have too little resolution power - in terms of space and time - to delineate individual and subjective brain processes. When subtle personalized properties of the nervous system can be assessed in vivo or in vitro, qualia can scientifically be investigated. We discuss some approaches to overcome these barriers.


2003 ◽  
Vol 23 (11) ◽  
pp. 4000-4012 ◽  
Author(s):  
Ludovic Delage ◽  
André Dietrich ◽  
Anne Cosset ◽  
Laurence Maréchal-Drouard

ABSTRACT Some of the mitochondrial tRNAs of higher plants are nuclearly encoded and imported into mitochondria. The import of tRNAs encoded in the nucleus has been shown to be essential for proper protein translation within mitochondria of a variety of organisms. Here, we report the development of an in vitro assay for import of nuclearly encoded tRNAs into plant mitochondria. This in vitro system utilizes isolated mitochondria from Solanum tuberosum and synthetic tRNAs transcribed from cloned nuclear tRNA genes. Although incubation of radioactively labeled in vitro-transcribed tRNAAla, tRNAPhe, and tRNAMet-e with isolated potato mitochondria resulted in importation, as measured by nuclease protection, the amount of tRNA transcripts protected at saturation was at least five times higher for tRNAAla than for the two other tRNAs. This difference in in vitro saturation levels of import is consistent with the in vivo localization of these tRNAs, since cytosolic tRNAAla is naturally imported into potato mitochondria whereas tRNAPhe and tRNAMet-e are not. Characterization of in vitro tRNA import requirements indicates that mitochondrial tRNA import proceeds in the absence of any added cytosolic protein fraction, involves at least one protein component on the surface of mitochondria, and requires ATP-dependent step(s) and a membrane potential.


Sign in / Sign up

Export Citation Format

Share Document