Leukemia-Associated MLL-AF10 Fusion Maintains an Active State of Chromatin on Its Target Genes By Recruiting Tip60

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 304-304 ◽  
Author(s):  
Kazutsune Yamagata ◽  
Yukiko Aikawa ◽  
Mika Shino ◽  
Issay Kitabayashi

Abstract Chromosome translocation involving the mixed lineage leukemia (MLL) gene which generates an in-frame fusion gene of the MLL 5′-region and partner genes, is a common rearrangement in acute myeloid and lymphoid leukemia that is associated with poor prognosis. Knock-in and retroviral transduction studies show that MLL-fusion results in constitutive activation of the transcription of target genes such as Hoxa9 and Meis1 during the development of leukemia. Recent studies show that several transcription regulators, such as Dot1L, Cbx8, PAF1, and AEP/EAP complexes, are required for the leukemogenic activity of MLL-fusion; however, the underlying mechanisms remain elusive. To clarify the mechanism of epigenetic regulation by MLL-fusions, we established a novel leukemia model by generating a conditional MLL-AF10 fusion gene, MLL-AF10 flox, in which the 3′-AF10 region is deleted by 4-OHT-activated Cre-ERT recombinase, resulting in inactivation of MLL-AF10 flox (Figure 1A). Mouse hematopoietic stem/progenitor cells (c-kit+) were immortalized by retroviral transduction of MLL-AF10 flox and cultured in vitro or transplanted into irradiated recipient mice to induce AML in vivo. Treatment of MLL-AF10 flox cells with 4-OHT in vitro to inactivate MLL-AF10 flox downregulated Hoxa9 expression and markedly decreased colony-forming ability. In addition, the inactivation of MLL-AF10 flox rapidly decreased the acetylation level of the histone H2A variant H2A.Z on the Hoxa9 locus. These results suggest that MLL-AF10, possibly together with a histone acetyltransferase (HAT), regulates the acetylation of H2A.Z on the Hoxa9 locus. To identify the HAT responsible for H2A.Z acetylation induced by MLL-AF10, protein complexes associated with H2A.Z-containing nucleosomes were purified, resulting in the identification of Tip60, a MYST-type HAT in a complex with H2A.Z. MLL-AF10 physically interacted with Tip60 via the AF10 C-terminal portion of MLL-AF10 (Figure 1B). ChIP analysis showed that MLL-AF10 and Tip60 co-localize on the Hoxa9 locus in MLL-AF10-transformed cells (MLL-AF10 cells). Furthermore, conditional deletion of Tip60 in MLL-AF10 (Tip60 Flox/Flox, Cre-ERT2) cells dramatically downregulated Hoxa9 expression and resulted in the accumulation of unacetylated H2A.Z on the Hoxa9 locus. Consistent with these data, in vitro acetylation analysis showed that Tip60 directly acetylates H2A.Z. To assess the role of Tip60 in leukemia development in vivo, MLL-AF10 (Tip60 Flox/Flox, Cre-ERT2) leukemia cells were injected into recipient mice. Animals receiving intraperitoneal injection of tamoxifen to delete Tip60 failed to develop MLL-AF10 leukemia (Figure 1C). These data indicate that Tip60 is required for the development of MLL-AF10 leukemia and suggest that MLL-AF10 recruits Tip60 to acetylate H2A.Z on the Hoxa9 locus. The effect of H2A.Z acetylation on Hoxa9 expression was examined by purifying nucleosomes containing acetylation-deficient 3KR H2A.Z (which mimics unacetylated H2A.Z), in which lysines 4, 7, and 11 were substituted by arginine. 3KR H2A.Z preferentially formed nucleosomes with histone H3 trimethylation at lysine 27, which is catalyzed by polycomb repressive complex 2 (PRC2). This finding suggests that nucleosomes including unacetylated H2A.Z are the preferential targets of PRC2. Loss of Tip60 in MLL-AF10 cells resulted in decreased levels of acetylated H2A.Z on the Hoxa9 locus and the recruitment of Ezh2 (a catalytic subunit of PRC2) and increased histone H3 K27 trimethylation. Taken together, these data indicate that Tip60 is a critical factor in the development of MLL-AF10 leukemia. MLL-AF10 may maintain an active chromatin state on its target genesby recruiting Tip60, which acetylates H2A.Z to prevent PRC2 recruitment and gene silencing. On the other hand, unacetylated H2A.Z may be a signal for PRC2 recruitment, which would be induced as a result of Tip60 loss or inactivation of MLL-AF10. Figure 1. Figure 1. Disclosures Kitabayashi: Daiichi Sankyo Co., Ltd.: Research Funding.

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248425
Author(s):  
Ryoichi Ono ◽  
Masahiro Masuya ◽  
Naokazu Inoue ◽  
Makoto Shinmei ◽  
Satomi Ishii ◽  
...  

The Ten Eleven Translocation 1 (TET1) gene encodes an epigenetic modifying molecule that is involved in demethylation of 5-methylcytosine. In hematological malignancies, loss-of-function mutations of TET2, which is one of the TET family genes including TET1, are frequently found, while the mutations of TET1 are not. However, clinical studies have revealed that TET1 is highly expressed in some cases of the hematological malignancies including acute myeloid leukemia. Indeed, studies by mouse models using conventional Tet1 knockout mice demonstrated that Tet1 is involved in myeloid leukemogenesis by Mixed Lineage Leukemia (MLL) fusion gene or TET2 mutant. Meanwhile, the other study showed that Tet1 is highly expressed in hematopoietic stem cells (HSCs), and that deletion of Tet1 in HSCs enhances potential self-renewal capacity, which is potentially associated with myeloid leukemogenesis. To examine the role of Tet1 in myeloid leukemogenesis more precisely, we generated novel conditional Tet1-knockout mice, which were used to generate the compound mutant mice by crossing with the inducible MLL-ENL transgenic mice that we developed previously. The leukemic immortalization in vitro was not critically affected by conditional ablation of Tet1 in HSCs with the induced expression of MLL-ENL or in hematopoietic progenitor cells retrovirally transduced with MLL-ENL. In addition, the leukemic phenotypes caused by the induced expression of MLL-ENL in vivo was not also critically affected in the compound mutant mouse model by conditional ablation of Tet1, although we found that the expression of Evi1, which is one of critical target genes of MLL fusion gene, in tumor cells was remarkably low under Tet1-ablated condition. These results revealed that Tet1 was dispensable for the myeloid leukemogenesis by MLL-ENL, suggesting that the therapeutic application of Tet1 inhibition may need careful assessment.


Blood ◽  
2020 ◽  
Author(s):  
Yun Tan ◽  
Xiaoling Wang ◽  
Huan Song ◽  
Yi Zhang ◽  
Rongsheng Zhang ◽  
...  

Transcriptional deregulation initiated by oncogenic fusion proteins plays a vital role in leukemia. The prevailing view is that the oncogenic fusion protein PML/RARα, generated by the chromosome translocation t(15;17), functions as a transcriptional repressor in acute promyelocytic leukemia (APL). Here we provide rich evidence of how PML/RARα drives oncogenesis through both repressive and activating functions, particularly the importance of the newly identified activation role for the leukemogenesis of APL. The activating function of PML/RARα is achieved by recruiting both abundant P300 and HDAC1 and by the formation of super-enhancers. All-trans retinoic acid and arsenic trioxide, two widely used drugs in APL therapy, exert synergistic effects on controlling super-enhancer-associated PML/RARα-regulated targets in APL cells. We utilize a series of in vitro and in vivo experiments to demonstrate that PML/RARα-activated target gene GFI1 is necessary for the maintenance of APL cells, and that PML/RARα, likely oligomerized, transactivates GFI1 through chromatin conformation at the super-enhancer region. Finally, we profile GFI1 targets and reveal the interplay between GFI1 and PML/RARα on chromatin in co-regulating target genes. Our study provides genomic insight into the dual role of fusion transcription factors in transcriptional deregulation to drive leukemia development, highlighting the importance of globally dissecting regulatory circuits.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 951 ◽  
Author(s):  
Yong Dong ◽  
Chengxiang Xia ◽  
Qitong Weng ◽  
Tongjie Wang ◽  
Fangxiao Hu ◽  
...  

Natural hematopoietic stem cells (HSC) are susceptible and tend to lose stemness, differentiate, or die on culture condition in vitro, which adds technical challenge for maintaining bona fide HSC-like cells, if ever generated, in protocol screening from pluripotent stem cells. It remains largely unknown whether gene-editing of endogenous genes can genetically empower HSC to endure the culture stress and preserve stemness. In this study, we revealed that both NUP98-HOXA10HD fusion and endogenous Nras mutation modifications (NrasG12D) promoted the engraftment competitiveness of HSC. Furthermore, the synergy of these two genetic modifications endowed HSC with super competitiveness in vivo. Strikingly, single NAV-HSC successfully maintained its stemness and showed robust multi-lineage engraftments after undergoing the in vitro culture. Mechanistically, NUP98-HOXA10HD fusion and NrasG12D mutation distinctly altered multiple pathways involving the cell cycle, cell division, and DNA replication, and distinctly regulated stemness-related genes including Hoxa9, Prdm16, Hoxb4, Trim27, and Smarcc1 in the context of HSC. Thus, we develop a super-sensitive transgenic model reporting the existence of HSC at the single cell level on culture condition, which could be beneficial for protocol screening of bona fide HSC regeneration from pluripotent stem cells in vitro.


2004 ◽  
Vol 279 (50) ◽  
pp. 52183-52190 ◽  
Author(s):  
Pascale Jackers ◽  
Gabor Szalai ◽  
Omar Moussa ◽  
Dennis K. Watson

Megakaryopoiesis is the process by which hematopoietic stem cells in the bone marrow differentiate into mature megakaryocytes. The expression of megakaryocytic genes during megakaryopoiesis is controlled by specific transcription factors. Fli-1 and GATA-1 transcription factors are required for development of megakaryocytes and promoter analysis has definedin vitrofunctional binding sites for these factors in several megakaryocytic genes, includingGPIIb,GPIX, andC-MPL. Herein, we utilize chromatin immunoprecipitation to examine the presence of Ets-1, Fli-1, and GATA-1 on these promotersin vivo. Fli-1 and Ets-1 occupy the promoters ofGPIIb,GPIX, andC-MPLgenes in both Meg-01 and CMK11-5 cells. WhereasGPIIbis expressed in both Meg-01 and CMK11-5 cells,GPIXandC-MPLare only expressed in the more differentiated CMK11–5 cells. Thus,in vivooccupancy by an Ets factor is not sufficient to promote transcription of some megakaryocytic genes. GATA-1 and Fli-1 are both expressed in CMK11-5 cells and co-occupy theGPIXandC-MPLpromoters. Transcription of all three megakaryocytic genes is correlated with the presence of acetylated histone H3 and phosphorylated RNA polymerase II on their promoters. We also show that exogenous expression of GATA-1 in Meg-01 cells leads to the expression of endogenous c-mpl and gpIX mRNA. WhereasGPIIb,GPIX, andC-MPLare direct target genes for Fli-1, both Fli-1 and GATA-1 are required for formation of an active transcriptional complex on theC-MPLandGPIXpromotersin vivo. In contrast,GPIIbexpression appears to be independent of GATA-1 in Meg-01 cells.


Blood ◽  
2012 ◽  
Vol 120 (5) ◽  
pp. 1107-1117 ◽  
Author(s):  
Satomi Tanaka ◽  
Satoru Miyagi ◽  
Goro Sashida ◽  
Tetsuhiro Chiba ◽  
Jin Yuan ◽  
...  

Abstract EZH2, a catalytic component of the polycomb repressive complex 2, trimethylates histone H3 at lysine 27 (H3K27) to repress the transcription of target genes. Although EZH2 is overexpressed in various cancers, including some hematologic malignancies, the role of EZH2 in acute myeloid leukemia (AML) has yet to be examined in vivo. In the present study, we transformed granulocyte macrophage progenitors from Cre-ERT;Ezh2flox/flox mice with the MLL-AF9 leukemic fusion gene to analyze the function of Ezh2 in AML. Deletion of Ezh2 in transformed granulocyte macrophage progenitors compromised growth severely in vitro and attenuated the progression of AML significantly in vivo. Ezh2-deficient leukemic cells developed into a chronic myelomonocytic leukemia–like disease with a lower frequency of leukemia-initiating cells compared with the control. Chromatin immunoprecipitation followed by sequencing revealed a significant reduction in the levels of trimethylation at H3K27 in Ezh2-deficient leukemic cells, not only at Cdkn2a, a known major target of Ezh2, but also at a cohort of genes relevant to the developmental and differentiation processes. Overexpression of Egr1, one of the derepressed genes in Ezh2-deficient leukemic cells, promoted the differentiation of AML cells profoundly. Our findings suggest that Ezh2 inhibits differentiation programs in leukemic stem cells, thereby augmenting their leukemogenic activity.


Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3432-3440 ◽  
Author(s):  
Ling Zhao ◽  
Jennifer L. Cannons ◽  
Stacie Anderson ◽  
Martha Kirby ◽  
Liping Xu ◽  
...  

Abstract Recent studies suggest that the chromosome 16 inversion, associated with acute myeloid leukemia M4Eo, takes place in hematopoietic stem cells. If this is the case, it is of interest to know the effects of the resulting fusion gene, CBFB-MYH11, on other lineages. Here we studied T-cell development in mice expressing Cbfb-MYH11 and compared them with mice compound-heterozygous for a Cbfb null and a hypomorphic GFP knock-in allele (Cbfb−/GFP), which had severe Cbfb deficiency. We found a differentiation block at the DN1 stage of thymocyte development in Cbfb-MYH11 knock-in chimeras. In a conditional knock-in model in which Cbfb-MYH11 expression was activated by Lck-Cre, there was a 10-fold reduction in thymocyte numbers in adult thymus, resulting mainly from impaired survival of CD4+CD8+ thymocytes. Although Cbfb-MYH11 derepressed CD4 expression efficiently in reporter assays, such derepression was less pronounced in vivo. On the other hand, CD4 expression was derepressed and thymocyte development was blocked at DN1 and DN2 stages in E17.5 Cbfb−/GFP thymus, with a 20-fold reduction of total thymocyte numbers. Our data suggest that Cbfb-MYH11 suppressed Cbfb in several stages of T-cell development and provide a mechanism for CBFB-MYH11 association with myeloid but not lymphoid leukemia.


2020 ◽  
Vol 4 (24) ◽  
pp. 6175-6188
Author(s):  
Yamato Tanabe ◽  
Shimpei Kawamoto ◽  
Tomoiku Takaku ◽  
Soji Morishita ◽  
Atsushi Hirao ◽  
...  

Abstract BCR-ABL, an oncogenic fusion gene, plays a central role in the pathogenesis of chronic myeloid leukemia (CML). Oncogenic signaling induces oncogene-induced senescence and senescence-associated secretory phenotype (SASP), which is characterized by enhanced production of various cytokines. BCR-ABL gene transduction confers senescent phenotype in vitro; however, the in vivo relevance of senescence has not been explored in this context. Transplantation of BCR-ABL–expressing hematopoietic stem/progenitor cells caused CML in mice with an increase in bone marrow BCR-ABL+CD41+CD150+ leukemic megakaryocyte-lineage (MgkL) cells, which exhibited enhanced senescence-associated β-galactosidase staining and increased expression of p16 and p21, key molecules that are crucially involved in senescence. Moreover, knockout of p16 and p21 genes reduced both BCR-ABL–induced abnormal megakaryopoiesis and the maintenance of CML cell leukemogenic capacity, as evidenced by attenuated leukemogenic capacity at secondary transplantation. The expression of transforming growth factor-β1 (TGF-β1), a representative SASP molecule, was enhanced in the leukemic MgkL cells, and TGF-β1 inhibition attenuated CML cell leukemogenic capacity both in vitro and in vivo. Furthermore, BCR-ABL–expressing MgkL cells displayed enhanced autophagic activity, and autophagy inhibition reduced bone marrow MgkL cell number and prolonged the survival of CML mice, which had transiently received the tyrosine kinase inhibitor, imatinib, earlier. Thus, BCR-ABL induced the expansion of senescent leukemic MgkL cells, which supported CML leukemogenesis by providing TGF-β1.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 767-767
Author(s):  
Michal Abraham ◽  
Shiri Klein ◽  
Baruch Bulvik ◽  
Hanna Wald ◽  
Dvora Holam ◽  
...  

Abstract Background: Acute Myeloid Leukemia (AML) is a heterogeneous group of diseases characterized by uncontrolled proliferation and survival of hematopoietic stem and progenitor cells. The chemokine CXCL12 and its receptor CXCR4 are key players in the survival, bone marrow (BM) retention and the maintenance of AML blasts in their stemness state. CXCR4 overexpression is associated with poor prognosis in AML patients. Signaling activated through CXCR4 was shown to be detrimental by increasing survival of tumor cells and promoting resistance to therapy. Objective: To study the effect of the CXCR4-antagonist, BL-8040, on the survival of human AML blasts and to investigate the molecular mechanism by which inhibition of CXCR4 signaling leads to leukemia cell death. Methods: Human AML cell lines and human primary AML samples were used for in vitro studies. The in-vivo effect of BL-8040 was tested using the MV4-11, U-937, THP-1 cells and human primary AML cells engrafted in NOD scid gamma (NSG) mice. Results: We found that BL-8040 directly induced apoptosis of AML cells both in FLT3-ITD and FLT3-WT AML, in-vitro and in-vivo. BL-8040 treatment triggered mobilization of AML blasts from their protective BM microenvironment and induced their terminal differentiation, in-vitro and in-vivo. The apoptosis of AML cells induced by BL-8040 was attributed to miR-15a/miR-16-1 up-regulation resulting in down-regulation of their target genes BCL-2, MCL-1 and cyclin-D1. The increase in miR-15a/miR-16-1 levels directly induced AML cell death. Moreover, CXCR4 blockade by BL-8040 also inhibited survival signals by the ERK/AKT kinases enhancing the apoptosis effect. Survival of AML cells was found to be dependent on BCL-2 as demonstrated by the ability of the BCL-2 inhibitor, ABT-199, to induce dose dependent apoptosis in vitro. It was reported that the MCL-1 protein plays a key role in acquiring resistance to ABT-199. We found that BL-8040 synergizes with ABT-199 in inducing AML cell death. This could be attributed to the reduction of both, AKT/ERK and MCL-1 levels, by treatment with BL-8040. In addition, BL-8040 synergizes with the FLT3 inhibitor AC220 in the induction of AML cell death both in-vivo and in-vitro. The combined treatment of BL-8040 and AC220 was found to prolong survival and reduce minimal residual disease in-vivo. Interestingly, the combined treatment was also associated with a significant reduction in the expression of BCL-2 and ERK signaling. Conclusions: BL-8040 can be a potential therapeutic option in AML by targeting not only AML anchorage in the BM but also AML survival and differentiation. Our results demonstrate that BL-8040 in AML regulates the expression of miR-15a/16-1 and their target genes BCL-2, MCL-1 and cyclin-D1. Furthermore, these results indicate that the CXCR4 antagonist, BL-8040 may tip the balance toward cell death by down- regulating survival signals through miR-15a/16-1 pathway and inhibition of the ERK/AKT survival signaling cascade in AML cells. Our results provide rational for combination of BL-8040 with ABT-199 to overcome potential acquired resistance to ABT-199 in AML patients. The synergistic effect of BL-8040 with AC220 could provide a rational basis for the combination of BL-8040 with FLT3 inhibitors in FLT3-ITD AML patient population. Figure 1. Figure 1. Figure 2. Figure 2. Figure 3. Figure 3. Disclosures Abraham: Biokine Therapeutics Ltd: Employment. Bulvik:Biokine Therapeutics Ltd: Employment. Wald:Biokine Therapeutics Ltd: Employment. Eizenberg:Biokine Therapeutics Ltd: Employment. Pereg:BioLineRx Ltd: Employment. Peled:Biokine Therapeutics Ltd: Consultancy, Employment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 165-165 ◽  
Author(s):  
Jana Reimer ◽  
Sabine Knoess ◽  
Maurice Labuhn ◽  
Emmanuelle Marie Charpentier ◽  
Jan-Henning Klusmann ◽  
...  

Abstract Reciprocal chromosomal translocations are the causative genetic aberration in almost 60% of the pediatric acute myeloid leukemia cases. Amongst these, rearrangements of the MLL1/KMT2A gene are most frequent. Retroviral overexpression of MLL fusion genes has been shown to be sufficient to transform human hematopoietic stem and progenitor cells (HSPCs). Whether endogenous MLL-rearrangements have a similarly potent transformation capacity remains an open question. As an emerging technology, the clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated-9 (Cas9) system now offers the opportunity to engineer chromosomal rearrangements, allowing the investigation of fusion oncogenes in the endogenous context. The successful transfer to the target cell type represents the only limitation. With the aim to elucidate the transformative nature of endogenous MLL-rearrangements in primary human HSPCs, we developed and advanced an all-in-one lentiviral CRISPR-Cas9 system with two sgRNA expression cassettes (LentiCRISPR-CT2.0). The improved lentiviral architecture with additional viral enhancer elements yielded a vector capable of producing higher-titer virus (2.5-fold; p=0<0.0001), compared to our previously published vectors. Utilizing established reporter-based sgRNA testing, we selected highly efficient sgRNAs targeting MLL1 and ENL intronic sequences (cleavage rates >80%) to generate the t(11;19)/MLL-ENL translocation. T7 endonuclease assays for the top five off-target sites and the on-target sites of our pre-selected sgRNAs verified high on-target and no detectable off-target activity at the endogenous loci. Dual sgRNA expression from a H1 promoter in combination with a U6 promoter was incorporated thereby establishing an efficient, recombination- and off-target-free all-in-one lentiviral CRISPR-Cas9 system for induction of chromosomal rearrangements. Based on these results, we tested generation of chromosomal rearrangements in hematopoietic cell lines. MLL-ENL transcript and the genomic breakpoint were robustly detectable in the transduced bulk population (K562 cells). To determine the impact of endogenous MLL-ENL on HSPCs, we transduced cord blood derived CD34+ HSPCs. In three independent experiments using methylcellulose-based colony-forming assays, MLL-ENL expression was detectable, resulting in a rearrangement efficacy of at least 1.58x10-3 (detection/total colony number). MLL-ENL containing cells, verified on DNA and RNA level, had an extended -but not unlimited- replating capacity. Our experiments thus provide strong evidence that endogenous MLL-ENL translocations provide a growth advantage and limited self-renewal to human HSPCs. These findings were further supported by clonal outgrowth in one out of two experiments performed in liquid culture. Transformation by MLL-rearrangements is guided by up-regulation of HOXA genes and their co-factors MEIS1 and PBX3. In line with these findings, MLL-ENL harboring cells showed robust up-regulation of HOXA9, HOXA10, MEIS1, and PBX3. Interestingly, genes associated with leukemic stem cell activity (CBX5, HMGB3, MYBL2) after retroviral MLL fusion gene expression in mice, were found down-regulated in our study. This finding highlights crucial differences to the previous, retrovirus-based studies in mice and the need to study chromosomal rearrangements at their endogenous locus in the primary human cell context. With the results of our in vitro studies, we next aimed to interrogate the transforming capacity of endogenous MLL-rearrangements in vivo. CD34+ HSPCs, freshly transduced with the LentiCRISPR-CT2.0, were transplanted into immunodeficient mice. Detection of MLL-ENL genomic breakpoints in the mice (8 weeks post transplant) strongly supports our in vitro findings of successful HSPC modification and underlines the power of our approach. Further follow up of our in vivo studies will yield new insights on clonal behavior and downstream events of endogenous MLL-rearrangements in human HSPCs. In aggregate, our study uncovers the oncogenic potency and limitations of endogenous MLL translocations in human HSPCs and highlights the power of the CRISPR-Cas9 system to generate precise cancer models, which will allow us to test the efficacy of targeted therapies, and to investigate the mechanisms of drug resistance in vitro and in vivo. Disclosures Charpentier: CRISPR Therapeutics AG: Other: Co-founder of CRISPR Therapeutics AG and a member of the scientific advisory board of CRISPR Therapeutics AG and Horizon Discovery Group..


2003 ◽  
Vol 23 (23) ◽  
pp. 8829-8845 ◽  
Author(s):  
Sungpil Yoon ◽  
Hongfang Qiu ◽  
Mark J. Swanson ◽  
Alan G. Hinnebusch

ABSTRACT The nucleosome remodeling complex SWI/SNF is a coactivator for yeast transcriptional activator Gcn4p. We provide strong evidence that Gcn4p recruits the entire SWI/SNF complex to its target genes ARG1 and SNZ1 but that SWI/SNF is dispensable for Gcn4p binding to these promoters. It was shown previously that Snf2p/Swi2p, Snf5p, and Swi1p interact directly with Gcn4p in vitro. However, we found that Snf2p is not required for recruitment of SWI/SNF by Gcn4p nor can Snf2p be recruited independently of other SWI/SNF subunits in vivo. Snf5p was not recruited as an isolated subunit but was required with Snf6p and Swi3p for optimal recruitment of other SWI/SNF subunits. The results suggest that Snf2p, Snf5p, and Swi1p are recruited only as subunits of intact SWI/SNF, a model consistent with the idea that Gcn4p makes multiple contacts with SWI/SNF in vivo. Interestingly, Swp73p is necessary for efficient SWI/SNF recruitment at SNZ1 but not at ARG1, indicating distinct subunit requirements for SWI/SNF recruitment at different genes. Optimal recruitment of SWI/SNF by Gcn4p also requires specific subunits of SRB mediator (Gal11p, Med2p, and Rox3p) and SAGA (Ada1p and Ada5p) but is independent of the histone acetyltransferase in SAGA, Gcn5p. We suggest that SWI/SNF recruitment is enhanced by cooperative interactions with subunits of SRB mediator and SAGA recruited by Gcn4p to the same promoter but is insensitive to histone H3 acetylation by Gcn5p.


Sign in / Sign up

Export Citation Format

Share Document