scholarly journals Choosing an appropriate modelling framework for analysing multispecies co-culture cell biology experiments

2014 ◽  
Author(s):  
Deborah C Markham ◽  
Matthew J Simpson ◽  
Ruth E Baker

In vitro cell biology assays play a crucial role in informing our understanding of the migratory, proliferative and invasive properties of many cell types in different biological contexts. While mono-culture assays involve the study of a population of cells composed of a single cell type, co-culture assays study a population of cells composed of multiple cell types (or subpopulations of cells). Such co-culture assays can provide more realistic insights into many biological processes including tissue repair, tissue regeneration and malignant spreading. Typically, system parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical or computational model to the observed experimental data. However, parameter estimates can be highly sensitive to the choice of model and modelling framework. This observation motivates us to consider the fundamental question of how we can best choose a model to facilitate accurate parameter estimation for a particular assay. In this work we describe three mathematical models of mono-culture and co-culture assays that include different levels of spatial detail. We study various spatial summary statistics to explore if they can be used to distinguish between the suitability of each model over a range of parameter space. Our results for mono-culture experiments are promising, in that we suggest two spatial statistics that can be used to direct model choice. However, co-culture experiments are far more challenging: we show that these same spatial statistics which provide useful insight into mono-culture systems are insufficient for co-culture systems. Therefore, we conclude that great care ought to be exercised when estimating the parameters of co-culture assays.

Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Palaniselvam Kuppusamy ◽  
Dahye Kim ◽  
Ilavenil Soundharrajan ◽  
Inho Hwang ◽  
Ki Choon Choi

A co-culture system allows researchers to investigate the complex interactions between two cell types under various environments, such as those that promote differentiation and growth as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the in vivo environment and are used to investigate the causal relationships between different cell lines. Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the study of communication between two or more cell types, including adipocytes and myocytes. Also, we provide details about the different types of co-culture systems and their applicability to the study of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades. Therefore, this review provides details about the co-culture systems used to study the complex interactions between adipose and muscle cells in various environments, such as those that promote cell differentiation and growth and those used for drug development.


1998 ◽  
Vol 10 (8) ◽  
pp. 535 ◽  
Author(s):  
T. A. Pelton ◽  
M. D. Bettess ◽  
J. Lake ◽  
J. Rathjen ◽  
P. D. Rathjen

Early mammalian embryogenesis is characterised by the coordinated proliferation, differentiation, migration and apoptosis of a pluripotent cell pool that is able to give rise to extraembryonic lineages and all the cell types of the embryo proper. These cells retain pluripotent differentiation capability, defined in this paper as the ability to form all cell types of the embryo and adult, until differentiation into the three embryonic germ layers at gastrulation. Our understanding of pluripotent cell biology and molecular regulation has been hampered by the difficulties associated with experimental manipulation of these cells in vivo. However, a more detailed understanding of pluripotent cell behaviour is emerging from the application of molecular technologies to early mouse embryogenesis. The construction of mouse mutants by gene targeting, mapping of gene expression in vivo, and modelling of cell decisions in vitro are providing insight into the cellular origin, identity and action of key developmental regulators, and the nature of pluripotent cells themselves. In this review we discuss the properties of early embryonic pluripotent cells in vitro and in vivo, focusing on progression from inner cell mass (ICM) cells in the blastocyst to the onset of gastrulation.


2019 ◽  
Vol 116 (23) ◽  
pp. 11444-11453 ◽  
Author(s):  
Stefan Florian ◽  
Yoshiko Iwamoto ◽  
Margaret Coughlin ◽  
Ralph Weissleder ◽  
Timothy J. Mitchison

As 3D culture has become central to investigation of tissue biology, mammary epithelial organoids have emerged as powerful tools for investigation of epithelial cell polarization and carcinogenesis. However, most current protocols start from single cells suspended in Matrigel, which can also restrict cell differentiation and behavior. Here, we show that the noncancerous mammary cell line HMT-3522 S1, when allowed to spontaneously form cell aggregates (“spheroids”) in medium without Matrigel, switches to a collective growth mode that recapitulates many attributes of “usual ductal hyperplasia” (UDH), a common benign mammary lesion. Interestingly, these spheroids undergo a complex maturation process reminiscent of embryonic development: solid-cell cords form their own basement membrane, grow on the surface of initially homogeneous cell aggregates, and form asymmetric lumina lined by two distinct cell types that express basal and luminal cytokeratins. This sequence of events provides a cellular mechanism that explains how the characteristic crescent-shaped, asymmetrical lumina form in UDH. Our results suggest that HMT-3522 S1 spheroids are useful as an in vitro model system to study UDH biology, glandular lumen formation, and stem cell biology of the mammary gland.


2021 ◽  
Vol 22 (2) ◽  
pp. 830
Author(s):  
Georgia Pennarossa ◽  
Sharon Arcuri ◽  
Teresina De Iorio ◽  
Fulvio Gandolfi ◽  
Tiziana A. L. Brevini

Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.


2021 ◽  
Vol 22 (3) ◽  
pp. 1151 ◽  
Author(s):  
Rosana Rodríguez-Casuriaga ◽  
Adriana Geisinger

Mammalian testes are very heterogeneous organs, with a high number of different cell types. Testicular heterogeneity, together with the lack of reliable in vitro culture systems of spermatogenic cells, have been an obstacle for the characterization of the molecular bases of the unique events that take place along the different spermatogenic stages. In this context, flow cytometry has become an invaluable tool for the analysis of testicular heterogeneity, and for the purification of stage-specific spermatogenic cell populations, both for basic research and for clinical applications. In this review, we highlight the importance of flow cytometry for the advances on the knowledge of the molecular groundwork of spermatogenesis in mammals. Moreover, we provide examples of different approaches to the study of spermatogenesis that have benefited from flow cytometry, including the characterization of mutant phenotypes, transcriptomics, epigenetic and genome-wide chromatin studies, and the attempts to establish cell culture systems for research and/or clinical aims such as infertility treatment.


2017 ◽  
Author(s):  
Wang Jin ◽  
Catherine J Penington ◽  
Scott W McCue ◽  
Matthew J Simpson

AbstractIn vitro cell culture is routinely used to grow and supply a sufficiently large number of cells for various types of cell biology experiments. Previous experimental studies report that cell characteristics evolve as the passage number increases, and various cell lines can behave differently at high passage numbers. To provide insight into the putative mechanisms that might give rise to these differences, we perform in silico experiments using a random walk model to mimic the in vitro cell culture process. Our results show that it is possible for the average proliferation rate to either increase or decrease as the passaging process takes place, and this is due to a competition between the initial heterogeneity and the degree to which passaging damages the cells. We also simulate a suite of scratch assays with cells from near–homogeneous and heterogeneous cell lines, at both high and low passage numbers. Although it is common in the literature to report experimental results without disclosing the passage number, our results show that we obtain significantly different closure rates when performing in silico scratch assays using cells with different passage numbers. Therefore, we suggest that the passage number should always be reported to ensure that the experiment is as reproducible as possible. Furthermore, our modelling also suggests some avenues for further experimental examination that could be used to validate or refine our simulation results.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Sabatier ◽  
Christian M. Beusch ◽  
Amir A. Saei ◽  
Mike Aoun ◽  
Noah Moruzzi ◽  
...  

AbstractDetailed characterization of cell type transitions is essential for cell biology in general and particularly for the development of stem cell-based therapies in regenerative medicine. To systematically study such transitions, we introduce a method that simultaneously measures protein expression and thermal stability changes in cells and provide the web-based visualization tool ProteoTracker. We apply our method to study differences between human pluripotent stem cells and several cell types including their parental cell line and differentiated progeny. We detect alterations of protein properties in numerous cellular pathways and components including ribosome biogenesis and demonstrate that modulation of ribosome maturation through SBDS protein can be helpful for manipulating cell stemness in vitro. Using our integrative proteomics approach and the web-based tool, we uncover a molecular basis for the uncoupling of robust transcription from parsimonious translation in stem cells and propose a method for maintaining pluripotency in vitro.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A C Herta ◽  
L Vo. Mengden ◽  
N Akin ◽  
K Billooye ◽  
J Va. Leersum ◽  
...  

Abstract Study question Are there significant differences in carbohydrate metabolism trends between in vivo and in vitro grown mouse antral follicles during oocyte final maturation? Summary answer Glucose metabolism characterization during GV to MII transition revealed altered metabolic patterns mainly in cumulus cells of in vitro grown and matured mouse antral follicles. What is known already For some cancer patients fertility restoration is dependent on using efficient in vitro follicle culture systems. As human donor ovarian tissue available for research is limited, establishing such culture systems relies on data generated from animal models. The culture system previously developed in our laboratory supports in vitro growth of mouse preantral follicles with good oocyte maturation rates but lower developmental competence compared to in vivo grown oocytes. Tracking and comparing the metabolic changes after meiotic maturation in in vitro and in vivo follicles could serve as a screening tool for improving culture conditions and identifying metabolic quality markers. Study design, size, duration Mouse secondary follicle culture was performed. In vitro grown oocytes, their corresponding cumulus (CC) and granulosa cells (GC) were collected from antral follicles, at germinal vesicle stage (GV) on day 9, and at metaphase 2 (MII) on day 10, after hCG/EGF stimulation. In vivo age-matched controls were obtained after intraperitoneal injections with eCG for GV, or with eCG and hCG for MII. In vivo GC after ovulation were not included. Participants/materials, setting, methods Glucose metabolism trends were compared during final maturation between in vitro grown antral follicles and their in vivo controls. Follicles that failed to resume meiosis in vitro were also included. Enzymatic spectrophotometric assays were used to measure glycolysis, pentose phosphate pathway (PPP), tricarboxylic acid (TCA) cycle, and the antioxidant capacity in individual cell types. Pools of 5 oocytes and corresponding somatic cells were collected, from 3 independent experiments. Unpaired t-test was performed with significance when p < 0.05. Main results and the role of chance Important differences were detected between in vivo and in vitro conditions. GV to MII transition in in vivo follicles leads to a metabolic boost in CC as indicated by: i. significant increase in glycolysis, PPP and TCA cycle activity; ii. higher total antioxidant capacity (TAC) (p < 0.05) and small molecule antioxidant capacity (SMAC) (p < 0.01). After ovulation, the only significant change in oocytes was an increase in nicotinamide adenine dinucleotide phosphate (NADP+) level (p < 0.01), possibly due to increased reduced-NADP recycling. Meiotic maturation triggered no significant differences in any of the metabolic pathways for in vitro grown oocytes. Contrary to their in vivo controls, in vitro CC showed significant upregulations limited to aconitase, lactate dehydrogenase (LDH) and glutathione-s-transferase (GST) activity (p < 0.05). In vitro GC showed increased G6PDH activity (p < 0.05), suggesting PPP upregulation. Significant differences were detected between in vivo GV follicles and the in vitro failed-to-mature ones. Oocytes from impaired follicles have higher NADP+ levels (p < 0.0001) than their in vivo immature counterparts. CC showed higher phosphofructokinase (PFK), LDH, catalase activity and increased NADP + (p < 0.01), TAC and SMAC (p < 0.05) compared to in vivo GV CCs. GCs from failed-to-mature follicles have significantly higher LDH and superoxide dismutase (SOD) activity than in vivo GV GC (p < 0.05). Limitations, reasons for caution The altered metabolic patterns described here in in vitro follicles during oocyte GV to MII transition are probably the cumulative effects of both growth and maturation in vitro. Wider implications of the findings: We explored extensively and directly, for the first time, several enzymes and metabolites involved in follicle glucose and redox metabolism in different cell types separately. Understanding of the follicle metabolic requirements is essential for the optimization of follicle culture systems and could lead to development of oocyte quality markers. Trial registration number Not applicable


2019 ◽  
Vol 70 (2) ◽  
pp. 610-613
Author(s):  
Laurentiu Dragus ◽  
Doina Lucia Ghergic ◽  
Raluca Monica Comaneanu ◽  
Anamaria Bechir ◽  
Costin Coman ◽  
...  

We evaluated the biocompatibility of four types of commercial alloys (two CoCr alloys and two NiCr alloys) used to make dental bridges. For the cell biology tests, a human osteosarcome type culture cell line MG63 (American Type Culture Collection) was used. Taking into account the results obtained, it can be said that the best results in terms of cell proliferation were observed for the Ni-Cr / Solibond N alloy closely followed by Co-Cr / Heraenium CE, then Co-Cr / Solibond C and Ni-Cr / Kera N, while cell viability tests revealed that the Co-Cr / Heraenium CE alloy exhibits the best biocompatibility, followed by Ni-Cr / Kera N, Co-Cr / Solibond C and Ni-Cr / Solibond N.


2017 ◽  
Vol 22 (5) ◽  
pp. 583-601 ◽  
Author(s):  
P. Marc D. Watson ◽  
Edel Kavanagh ◽  
Gary Allenby ◽  
Matthew Vassey

Neurodegeneration and neuroinflammation are key features in a range of chronic central nervous system (CNS) diseases such as Alzheimer’s and Parkinson’s disease, as well as acute conditions like stroke and traumatic brain injury, for which there remains significant unmet clinical need. It is now well recognized that current cell culture methodologies are limited in their ability to recapitulate the cellular environment that is present in vivo, and there is a growing body of evidence to show that three-dimensional (3D) culture systems represent a more physiologically accurate model than traditional two-dimensional (2D) cultures. Given the complexity of the environment from which cells originate, and their various cell–cell and cell–matrix interactions, it is important to develop models that can be controlled and reproducible for drug discovery. 3D cell models have now been developed for almost all CNS cell types, including neurons, astrocytes, microglia, and oligodendrocyte cells. This review will highlight a number of current and emerging techniques for the culture of astrocytes and microglia, glial cell types with a critical role in neurodegenerative and neuroinflammatory conditions. We describe recent advances in glial cell culture using electrospun polymers and hydrogel macromolecules, and highlight how these novel culture environments influence astrocyte and microglial phenotypes in vitro, as compared to traditional 2D systems. These models will be explored to illuminate current trends in the techniques used to create 3D environments for application in research and drug discovery focused on astrocytes and microglial cells.


Sign in / Sign up

Export Citation Format

Share Document