scholarly journals The neural correlates of two forms of spiritual love: an EEG study

2016 ◽  
Author(s):  
E. S. Louise Faber

AbstractSpiritual practices are gaining an increasingly wider audience as a means to enhance positive affect in healthy individuals and to treat neurological disorders such as anxiety and depression. The current study aimed to examine the neural correlates of two different forms of love generated by spiritual practices using EEG; love generated during a loving kindness meditation performed by Buddhist meditators, and love generated during prayer, in a separate group of participants from a Christian-based faith. The loving kindness meditation was associated with significant increases in delta, alpha 1, alpha 2 and beta power compared to baseline, while prayer induced significant increases in power of alpha 1 and gamma oscillations, together with an increase in the gamma: theta ratio. An increase in delta activity occurred during the loving kindness meditation but not during prayer. In contrast increases in theta, alpha 1, alpha 2, beta and gamma power were observed when comparing both types of practice to baseline, suggesting that increases in these frequency bands are the neural correlates of spiritual love, independent of the type of practice used to attain the state of this type of love. These findings show that both spiritual love practices are associated with widespread changes in neural activity across the brain, in particular at frequency ranges that have been implicated in positive emotional experience, integration of distributed neural activity, and changes in short-term and longterm neural circuitry.

Author(s):  
Lorraine Borghetti ◽  
Megan B. Morris ◽  
L. Jack Rhodes ◽  
Ashley R. Haubert ◽  
Bella Z. Veksler

Sustained attention is an essential behavior in life, but often leads to performance decrements with time. Computational accounts of sustained attention suggest this is due to brief disruptions in goal-directed processing, or microlapses. Decreases in gamma spectral power are a potential candidate for indexing microlapses and discriminating between low and high performers in sustained attention tasks, while increases in beta, alpha, and theta power are expected to exhibit compensatory effort to offset fatigue. The current study tests these hypotheses in a 10-minute Psychomotor Vigilance Test, a context that eliminates confounds with measuring gamma frequencies. 34 participants ( Mage = 22.60; SDage = 4.08) volunteered in the study. Results suggested frontal gamma power declined with time-on-task, indicating reduction in central cognition. Beta power increased with time-on-task, suggesting compensatory effort; however, alpha and theta power did not increase. Additionally, gamma power discriminated between low and high performers, potentially suggesting motivational differences between the groups.


2009 ◽  
Vol 21 (8) ◽  
pp. 1560-1570 ◽  
Author(s):  
Susanne Quadflieg ◽  
David J. Turk ◽  
Gordon D. Waiter ◽  
Jason P. Mitchell ◽  
Adrianna C. Jenkins ◽  
...  

Judging people on the basis of cultural stereotypes is a ubiquitous facet of daily life, yet little is known about how this fundamental inferential strategy is implemented in the brain. Using fMRI, we measured neural activity while participants made judgments about the likely actor (i.e., person-focus) and location (i.e., place-focus) of a series of activities, some of which were associated with prevailing gender stereotypes. Results revealed that stereotyping was underpinned by activity in areas associated with evaluative processing (e.g., ventral medial prefrontal cortex, amygdala) and the representation of action knowledge (e.g., supramarginal gyrus, middle temporal gyrus). In addition, activity accompanying stereotypic judgments was correlated with the strength of participants' explicit and implicit gender stereotypes. These findings elucidate how stereotyping fits within the neuroscience of person understanding.


2018 ◽  
Author(s):  
Nikolas A. Francis ◽  
Susanne Radtke-Schuller ◽  
Jonathan B. Fritz ◽  
Shihab A. Shamma

AbstractTask-related plasticity in the brain is triggered by changes in the behavioral meaning of sounds. We investigated plasticity in ferret dorsolateral frontal cortex (dlFC) during an auditory reversal task to study the neural correlates of proactive interference, i.e., perseveration of previously learned behavioral meanings that are no longer task-appropriate. Although the animals learned the task, target recognition decreased after reversals, indicating proactive interference. Frontal cortex responsiveness was consistent with previous findings that dlFC encodes the behavioral meaning of sounds. However, the neural responses observed here were more complex. For example, target responses were strongly enhanced, while responses to non-target tones and noises were weakly enhanced and strongly suppressed, respectively. Moreover, dlFC responsiveness reflected the proactive interference observed in behavior: target responses decreased after reversals, most significantly during incorrect behavioral responses. These findings suggest that the weak representation of behavioral meaning in dlFC may be a neural correlate of proactive interference.Significance StatementNeural activity in prefrontal cortex (PFC) is believed to enable cognitive flexibility during sensory-guided behavior. Since PFC encodes the behavioral meaning of sensory events, we hypothesized that weak representation of behavioral meaning in PFC may limit cognitive flexibility. To test this hypothesis, we recorded neural activity in ferret PFC, while ferrets performed an auditory reversal task in which the behavioral meanings of sounds were reversed during experiments. The reversal task enabled us study PFC responses during proactive interference, i.e. perseveration of previously learned behavioral meanings that are no longer task-appropriate. We found that task performance errors increased after reversals while PFC representation of behavioral meaning diminished. Our findings suggest that proactive interference may occur when PFC forms weak sensory-cognitive associations.


Author(s):  
Paweł Dobrakowski ◽  
Michal Blaszkiewicz ◽  
Sebastian Skalski

Focused attention meditation (FAM) is a category of meditation based on an EEG pattern, which helps the wandering mind to focus on a particular object. It seems that prayer may, in certain respects, be similar to FAM. It is believed that emotional experience correlates mainly with theta, but also with selective alpha, with internalized attention correlating mainly with the synchronous activity of theta and alpha. The vast majority of studies indicate a possible impact of transcendence in meditation on the alpha wave in EEG. No such reports are available for prayer. Seventeen women and nineteen men aged 27–64 years with at least five years of intensive meditation/prayer experience were recruited to participate in the study. We identified the two largest groups which remained in the meditation trend originating from the Buddhist system (14 people) (Buddhist meditators) and in the Christian-based faith (15 people) (Christian meditators). EEG signal was recorded with open eyes, closed eyes, during meditation/prayer, and relaxation. After the EEG recording, an examination was conducted using the Scale of Spiritual Transcendence. Buddhist meditators exhibited a statistically significantly higher theta amplitude at Cz during meditation compared to relaxation. Meanwhile, spiritual openness favored a higher theta amplitude at Pz during relaxation. Our study did not reveal statistically significant differences in frontal areas with regard to alpha and theta, which was often indicated in previous studies. It seems necessary to analyze more closely the midline activity in terms of dispersed neural activity integration.


2021 ◽  
Author(s):  
Kyoung Min Kim ◽  
Su Hyun Bong ◽  
Jun Won Kim

Abstract Background Diagnosis of anxiety has relied primarily on self-report. This study examined using quantitative electroencephalography (qEEG) to assess the association between anxiety and underlying neural correlates. Methods A total of 41 participants who visited a psychiatric clinic underwent resting state EEG and completed the State-Trait Anxiety Inventory. The absolute power of six frequency bands were analyzed: delta (1–4 Hz), theta (4–8 Hz), alpha (8–10 Hz), fast alpha (10–13.5 Hz), beta (13.5–30 Hz), and gamma (30–80 Hz). Results State anxiety scores were significantly negatively correlated with absolute gamma power in frontal (Fz, r = -0.484) and central (Cz, r = -0.523) regions, while trait anxiety scores were significantly negatively correlated with absolute gamma power in frontal (Fz, r = -0.523), central (Cz, r = -0.568), parietal (P7, r = -0.500; P8, r = -0.541), and occipital (O1, r = -0.510; O2, r = -0.480) regions. Conclusions The present study identified the significantly negative correlations between the anxiety level and gamma band power in fronto-central and posterior regions assessed at resting status. Further studies to confirm our findings and identify the neural correlates of anxiety are needed.


2021 ◽  
Author(s):  
Hillary L Cansler ◽  
Estelle E in 't Zandt ◽  
Kaitlin S. Carlson ◽  
Waseh T Khan ◽  
Minghong Ma ◽  
...  

Sensory perception is profoundly shaped by attention. Attending to an odor strongly regulates if and how a smell is perceived – yet the brain systems involved in this process are unknown. Here we report integration of the medial prefrontal cortex (mPFC), a collection of brain regions integral to attention, with the olfactory system in the context of selective attention to odors. First, we used tracing methods to establish the tubular striatum (TuS, also known as the olfactory tubercle) as the primary olfactory region to receive direct mPFC input in rats. Next, we recorded local field potentials from the olfactory bulb (OB), mPFC, and TuS while rats completed an olfactory selective attention task. Gamma power and coupling of gamma oscillations with theta phase were consistently high as rats flexibly switched their attention to odors. Beta and theta synchrony between mPFC and olfactory regions were elevated as rats switched their attention to odors. Finally, we found that sniffing was consistent despite shifting attentional demands, suggesting that the mPFC-OB theta coherence is independent of changes in active sampling. Together, these findings begin to define an olfactory attention network wherein mPFC activity, as well as that within olfactory regions, are coordinated in manners based upon attentional states.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255116
Author(s):  
Marlen A. Roehe ◽  
Daniel S. Kluger ◽  
Svea C. Y. Schroeder ◽  
Lena M. Schliephake ◽  
Jens Boelte ◽  
...  

Although statistical regularities in the environment often go explicitly unnoticed, traces of implicit learning are evident in our neural activity. Recent perspectives have offered evidence that both pre-stimulus oscillations and peri-stimulus event-related potentials are reliable biomarkers of implicit expectations arising from statistical learning. What remains ambiguous, however, is the origination and development of these implicit expectations. To address this lack of knowledge and determine the temporal constraints of expectation formation, pre-stimulus increases in alpha/beta power were investigated alongside a reduction in the N170 and a suppression in peri-/post-stimulus gamma power. Electroencephalography was acquired from naive participants who engaged in a gender classification task. Participants were uninformed, that eight face images were sorted into four reoccurring pairs which were pseudorandomly hidden amongst randomly occurring face images. We found a reduced N170 for statistically expected images at left parietal and temporo-parietal electrodes. Furthermore, enhanced gamma power following the presentation of random images emphasized the bottom-up processing of these arbitrary occurrences. In contrast, enhanced alpha/beta power was evident pre-stimulus for expected relative to random faces. A particularly interesting finding was the early onset of alpha/beta power enhancement which peaked immediately after the depiction of the predictive face. Hence, our findings propose an approximate timeframe throughout which consistent traces of enhanced alpha/beta power illustrate the early prioritisation of top-down processes to facilitate the development of implicitly cued face-related expectations.


2011 ◽  
Vol 23 (10) ◽  
pp. 3008-3020 ◽  
Author(s):  
Mikael Lundqvist ◽  
Pawel Herman ◽  
Anders Lansner

Changes in oscillatory brain activity are strongly correlated with performance in cognitive tasks and modulations in specific frequency bands are associated with working memory tasks. Mesoscale network models allow the study of oscillations as an emergent feature of neuronal activity. Here we extend a previously developed attractor network model, shown to faithfully reproduce single-cell activity during retention and memory recall, with synaptic augmentation. This enables the network to function as a multi-item working memory by cyclic reactivation of up to six items. The reactivation happens at theta frequency, consistently with recent experimental findings, with increasing theta power for each additional item loaded in the network's memory. Furthermore, each memory reactivation is associated with gamma oscillations. Thus, single-cell spike trains as well as gamma oscillations in local groups are nested in the theta cycle. The network also exhibits an idling rhythm in the alpha/beta band associated with a noncoding global attractor. Put together, the resulting effect is increasing theta and gamma power and decreasing alpha/beta power with growing working memory load, rendering the network mechanisms involved a plausible explanation for this often reported behavior.


2001 ◽  
Vol 24 (5) ◽  
pp. 999-1000 ◽  
Author(s):  
Geraint Rees ◽  
Chris Frith

O'Regan & Noë (O&N) are pessimistic about the prospects for discovering the neural correlates of consciousness. They argue that there can be no one-to-one correspondence between awareness and patterns of neural activity in the brain, so a project attempting to identify the neural correlates of consciousness is doomed to failure. We believe that this degree of pessimism may be overstated; recent empirical data show some convergence in describing consistent patterns of neural activity associated with visual consciousness.


2016 ◽  
Vol 371 (1708) ◽  
pp. 20160018 ◽  
Author(s):  
Stefan M. Schulz

Interoception is the ability to perceive one's internal body state including visceral sensations. Heart-focused interoception has received particular attention, in part due to a readily available task for behavioural assessment, but also due to accumulating evidence for a significant role in emotional experience, decision-making and clinical disorders such as anxiety and depression. Improved understanding of the underlying neural correlates is important to promote development of anatomical-functional models and suitable intervention strategies. In the present meta-analysis, nine studies reporting neural activity associated with interoceptive attentiveness (i.e. focused attention to a particular interoceptive signal for a given time interval) to one's heartbeat were submitted to a multilevel kernel density analysis. The findings corroborated an extended network associated with heart-focused interoceptive attentiveness including the posterior right and left insula, right claustrum, precentral gyrus and medial frontal gyrus. Right-hemispheric dominance emphasizes non-verbal information processing with the posterior insula presumably serving as the major gateway for cardioception. Prefrontal neural activity may reflect both top-down attention deployment and processing of feed-forward cardioceptive information, possibly orchestrated via the claustrum. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’.


Sign in / Sign up

Export Citation Format

Share Document