scholarly journals GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway

2016 ◽  
Author(s):  
Krzysztof Kiryluk ◽  
Yifu Li ◽  
Zina Moldoveanu ◽  
Hitoshi Suzuki ◽  
Colin Reily ◽  
...  

AbstractAberrant O-glycosylation of serum immunoglobulin A1 (IgA1) represents a heritable pathogenic defect in IgA nephropathy, the most common form of glomerulonephritis worldwide, but specific genetic factors involved in its determination are not known. We performed a quantitative GWAS for serum levels of galactose-deficient IgA1 (Gd-IgA1) in 2,633 subjects of European and East Asian ancestry and discovered two genome-wide significant loci, in C1GALT1 (rs13226913, P = 3.2 × 10−11) and C1GALT1C1 (rs5910940, P = 2.7 × 10−8). These genes encode molecular partners essential for enzymatic O-glycosylation of IgA1. We demonstrated that these two loci explain approximately 7% of variability in circulating Gd-IgA1 in Europeans, but only 2% in East Asians. Notably, the Gd-IgA1-increasing allele of rs13226913 is common in Europeans, but rare in East Asians. Moreover, rs13226913 represents a strong cis-eQTL for C1GALT1, which encodes the key enzyme responsible for the transfer of galactose to O-linked glycans on IgA1. By in vitro siRNA knock-down studies, we confirmed that mRNA levels of both C1GALT1 and C1GALT1C1 determine the rate of secretion of Gd-IgA1 in IgA1-producing cells. Our findings provide novel insights into the genetic regulation of O-glycosylation and are relevant not only to IgA nephropathy, but also to other complex traits associated with O-glycosylation defects, including inflammatory bowel disease, hematologic disease, and cancer.Author SummaryO-glycosylation is a common type of post-translational modification of proteins; specific abnormalities in the mechanism of O-glycosylation have been implicated in cancer, inflammatory and blood diseases. However, the molecular basis of abnormal O-glycosylation in these complex disorders is not known. We studied the genetic basis of defective O-glycosylation of serum Immunoglobulin A1 (IgA1), which represents the key pathogenic defect in IgA nephropathy, the most common form of primary glomerulonephritis worldwide. We report our results of the first genome-wide association study for this trait using serum assays in 2,633 individuals of European and East Asian ancestry. In our genome scan, we observed two significant signals with large effects, on chromosomes 7p21.3 and Xq24, jointly explaining about 7% of trait variability. These signals implicate two genes that encode molecular partners essential for enzymatic O-glycosylation of IgA1 and mucins, and represent potential new targets for therapy.

2021 ◽  
Author(s):  
Feng Wang ◽  
Di Liu ◽  
Yong Zhuang ◽  
Bowen Feng ◽  
Wenjin Lu ◽  
...  

AbstractObjectiveTo prioritize genes that were pleiotropically or potentially causally associated with periodontitis.MethodsWe applied the summary data-based Mendelian randomization (SMR) method integrating genome-wide association study (GWAS) for periodontitis and expression quantitative trait loci (eQTL) data to identify genes that were pleiotropically associated with periodontitis. We performed separate SMR analysis using CAGE eQTL data and GTEx eQTL data. SMR analysis were done for participants of European and East Asian ancestries, separately.ResultsWe identified multiple genes showing pleiotropic association with periodontitis in participants of European ancestry and participants of East Asian ancestry. PDCD2 (corresponding probe: ILMN_1758915) was the top hit showing pleotropic association with periodontitis in participants of European ancestry, and BX093763 (corresponding probe: ILMN_1899903) and AC104135.3 (corresponding probe: ENSG00000204792.2) were the top hits in participants of East Asian ancestry using CAGE eQTL data and GTEx eQTL data, respectively.ConclusionWe identified multiple genes that may be involved in the pathogenesis of periodontitis in participants of European ancestry and participants of East Asian ancestry. Our findings provided important leads to a better understanding of the mechanisms underlying periodontitis and revealed potential therapeutic targets for the effective treatment of periodontitis.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3951 ◽  
Author(s):  
Lida Rawofi ◽  
Melissa Edwards ◽  
S Krithika ◽  
Phuong Le ◽  
David Cha ◽  
...  

Background Currently, there is limited knowledge about the genetics underlying pigmentary traits in East Asian populations. Here, we report the results of the first genome-wide association study of pigmentary traits (skin and iris color) in individuals of East Asian ancestry. Methods We obtained quantitative skin pigmentation measures (M-index) in the inner upper arm of the participants using a portable reflectometer (N = 305). Quantitative measures of iris color (expressed as L*, a* and b* CIELab coordinates) were extracted from high-resolution iris pictures (N = 342). We also measured the color differences between the pupillary and ciliary regions of the iris (e.g., iris heterochromia). DNA samples were genotyped with Illumina’s Infinium Multi-Ethnic Global Array (MEGA) and imputed using the 1000 Genomes Phase 3 samples as reference haplotypes. Results For skin pigmentation, we did not observe any genome-wide significant signal. We followed-up in three independent Chinese samples the lead SNPs of five regions showing multiple common markers (minor allele frequency ≥ 5%) with good imputation scores and suggestive evidence of association (p-values < 10−5). One of these markers, rs2373391, which is located in an intron of the ZNF804B gene on chromosome 7, was replicated in one of the Chinese samples (p = 0.003). For iris color, we observed genome-wide signals in the OCA2 region on chromosome 15. This signal is driven by the non-synonymous rs1800414 variant, which explains 11.9%, 10.4% and 6% of the variation observed in the b*, a* and L* coordinates in our sample, respectively. However, the OCA2 region was not associated with iris heterochromia. Discussion Additional genome-wide association studies in East Asian samples will be necessary to further disentangle the genetic architecture of pigmentary traits in East Asian populations.


2020 ◽  
Author(s):  
Arianna Landini ◽  
Shaobo Yu ◽  
Guido Alberto Gnecchi‐Ruscone ◽  
Paolo Abondio ◽  
Claudia Ojeda‐Granados ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document