scholarly journals Modeling disease spread in populations with birth, death, and concurrency

2016 ◽  
Author(s):  
Joel C. Miller ◽  
Anja C. Slim

AbstractThe existence of sexual partnerships that overlap in time (concurrent relationships) is believed by some to be a significant contributing factor to the spread of HIV, although this is controversial. We derive an analytic model which allows us to investigate and compare disease spread in populations with and without concurrency. We can identify regions of parameter space in which its impact is negligible, and other regions in which it plays a major role. We also see that the impact of concurrency on the initial growth phase can be much larger than its impact on the equilibrium size. We see that the effect of concurrency saturates, which leads to the perhaps surprising conclusion that interventions targeting concurrency may be most effective in populations with low to moderate levels of concurrency.Author SummaryWe consider the spread of an infectious disease through a population modeled by a dynamic network with demographic turnover. We develop a stochastic model of the disease and derive governing equations that exactly predict the large population (deterministic) limit of the stochastic model. We use this to investigate the role of concurrency and find that interventions targeting concurrency may be most effective in populations with lower levels of concurrency.Our model is not intended to be an accurate representation of any single population. Rather it is intended to give general insights for intervention design and to provide a framework which can be further specialized to particular populations.This model is the first model to allow for analytic investigation of the impact of concurrent partnerships in a population exhibiting demographic turnover. Thus it will be useful for investigating the “concurrency hypothesis.”

2016 ◽  
Vol 24 (3) ◽  
pp. 436-446 ◽  
Author(s):  
Emmanuelle Ferrero ◽  
Barthelemy Liabaud ◽  
Vincent Challier ◽  
Renaud Lafage ◽  
Bassel G. Diebo ◽  
...  

OBJECT Previous forceplate studies analyzing the impact of sagittal-plane spinal deformity on pelvic parameters have demonstrated the compensatory mechanisms of pelvis translation in addition to rotation. However, the mechanisms recruited for this pelvic rotation were not assessed. This study aims to analyze the relationship between spinopelvic and lower-extremity parameters and clarify the role of pelvic translation. METHODS This is a retrospective study of patients with spinal deformity and full-body EOS images. Patients with only stenosis or low-back pain were excluded. Patients were grouped according to T-1 spinopelvic inclination (T1SPi): sagittal forward (forward, > 0.5°), neutral (−6.3° to 0.5°), or backward (< −6.3°). Pelvic translation was quantified by pelvic shift (sagittal offset between the posterosuperior corner of the sacrum and anterior cortex of the distal tibia), hip extension was measured using the sacrofemoral angle (SFA; the angle formed by the middle of the sacral endplate and the bicoxofemoral axis and the line between the bicoxofemoral axis and the femoral axis), and chin-brow vertical angle (CBVA). Univariate and multivariate analyses were used to compare the parameters and correlation with the Oswestry Disability Index (ODI). RESULTS In total, 336 patients (71% female; mean age 57 years; mean body mass index 27 kg/m2) had mean T1SPi values of −8.8°, −3.5°, and 5.9° in the backward, neutral, and forward groups, respectively. There were significant differences in the lower-extremity and spinopelvic parameters between T1SPi groups. The backward group had a normal lumbar lordosis (LL), negative SVA and pelvic shift, and the largest hip extension. Forward patients had a small LL and an increased SVA, with a large pelvic shift creating compensatory knee flexion. Significant correlations existed between lower-limb parameter and pelvic shift, pelvic tilt, T-1 pelvic angle, T1SPi, and sagittal vertical axis (0.3 < r < 0.8; p < 0.001). ODI was significantly correlated with knee flexion and pelvic shift. CONCLUSIONS This is the first study to describe full-body alignment in a large population of patients with spinal pathologies. Furthermore, patients categorized based on T1SPi were found to have significant differences in the pelvic shift and lower-limb compensatory mechanisms. Correlations between lower-limb angles, pelvic shift, and ODI were identified. These differences in compensatory mechanisms should be considered when evaluating and planning surgical intervention for adult patients with spinal deformity.


2020 ◽  
Vol 28 (04) ◽  
pp. 815-837
Author(s):  
KLOT PATANARAPEELERT

The impact of human mobility on the spreading of disease in a metapopulation is emphasized on interconnecting between patches, whereas the current volume of movement within the local population is usually neglected. Here, the role of internal commuters is taken into account by two means, a local transmission rate and the volume of internal commuters. Dynamic model of human mobility in the metapopulation with gravity coupling is presented. In conjunction with the disease spreading, the impact on invasion threshold and epidemic final size are analyzed. For two-patch model, we show that under fixing parameters in gravity model, the existence of invasion threshold depends on the difference of local transmission rates and the proportion of internal commuters between two patches. For a fully connected network with an identical transmission rate, the difference in patch final sizes is driven by patch distribution of internal commuters. By neglecting the effect of spatial variation in a simple core–satellite model, we show that the heterogeneity of internal commuters and gravity coupling induce a complex pattern of threshold, which depend mostly on the exponent in gravity model, and are responsible for the differences among local epidemic sizes.


2020 ◽  
Author(s):  
Jing Tan ◽  
Yiquan Xiong ◽  
Shaoyang Zhao ◽  
Chunrong Liu ◽  
Shiyao Huang ◽  
...  

AbstractObjectiveSince the outbreak of novel coronavirus pneumonia (COVID-19), human mobility restriction measures have raised controversies, partly due to inconsistent findings. Empirical study is urgently needed to reliably assess the causal effects of mobility restriction.MethodsOur study applied the difference-in-difference (DID) model to assess declines of population mobility at the city level, and used the log-log regression model to examine the effects of population mobility declines on the disease spread measured by cumulative or new cases of COVID-19 over time, after adjusting for confounders.ResultsThe DID model showed that a continual expansion of the relative declines over time in 2020. After four weeks, population mobility declined by 54.81% (interquartile ranges, −65.50% to −43.56%). The accrued population mobility declines were associated with significant reduction of cumulative COVID-19 cases throughout six weeks (i.e., 1% decline of population mobility was associated with 0.72% (95%CI 0.50% to 0.93%) reduce of cumulative cases for one week, 1.42% two weeks, 1.69% three weeks, 1.72% four weeks,1.64% five weeks and 1.52% six weeks). The impact on weekly new cases seemed greater in the first four weeks, but faded thereafter. The effects on cumulative cases differed by cities of different population sizes, with greater effects seen in larger cities.ConclusionPersistent population mobility restrictions are well deserved. However, a change in the degree of mobility restriction may be warranted over time, particularly after several weeks of rigorous mobility restriction. Implementation of mobility restrictions in major cities with large population sizes may be even more important.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009058
Author(s):  
Edward M. Hill ◽  
Benjamin D. Atkins ◽  
Matt J. Keeling ◽  
Louise Dyson ◽  
Michael J. Tildesley

As part of a concerted pandemic response to protect public health, businesses can enact non-pharmaceutical controls to minimise exposure to pathogens in workplaces and premises open to the public. Amendments to working practices can lead to the amount, duration and/or proximity of interactions being changed, ultimately altering the dynamics of disease spread. These modifications could be specific to the type of business being operated. We use a data-driven approach to parameterise an individual-based network model for transmission of SARS-CoV-2 amongst the working population, stratified into work sectors. The network is comprised of layered contacts to consider the risk of spread in multiple encounter settings (workplaces, households, social and other). We analyse several interventions targeted towards working practices: mandating a fraction of the population to work from home; using temporally asynchronous work patterns; and introducing measures to create ‘COVID-secure’ workplaces. We also assess the general role of adherence to (or effectiveness of) isolation and test and trace measures and demonstrate the impact of all these interventions across a variety of relevant metrics. The progress of the epidemic can be significantly hindered by instructing a significant proportion of the workforce to work from home. Furthermore, if required to be present at the workplace, asynchronous work patterns can help to reduce infections when compared with scenarios where all workers work on the same days, particularly for longer working weeks. When assessing COVID-secure workplace measures, we found that smaller work teams and a greater reduction in transmission risk reduced the probability of large, prolonged outbreaks. Finally, following isolation guidance and engaging with contact tracing without other measures is an effective tool to curb transmission, but is highly sensitive to adherence levels. In the absence of sufficient adherence to non-pharmaceutical interventions, our results indicate a high likelihood of SARS-CoV-2 spreading widely throughout a worker population. Given the heterogeneity of demographic attributes across worker roles, in addition to the individual nature of controls such as contact tracing, we demonstrate the utility of a network model approach to investigate workplace-targeted intervention strategies and the role of test, trace and isolation in tackling disease spread.


2021 ◽  
Author(s):  
Jessica A. Mele ◽  
Erik Rosenstrom ◽  
Julie Ivy ◽  
Maria Mayorga ◽  
Mehul D Patel ◽  
...  

The dominance of the COVID-19 Delta variant has renewed questions about the impact of K12 school policies, including the role of masks, on disease burden. A recent study showed masks and testing could reduce infections in students, but failed to address the impact on the community, while another showed masking is critical to slow disease spread in communities, but did not consider school openings under Delta. We project the impact of school-masking on the community, which can inform policy decisions, and support healthcare system planning. Our findings indicate that the implementation of masking policies in school settings can reduce additional infections post-school opening by 23-36% for fully-open schools, with an additional 11-13% reduction for hybrid schooling, depending on mask quality and fit. Masking policies and hybrid schooling can also reduce peak hospitalization need by 71% and result in the fewest additional deaths post-school opening. We show that given the current vaccination rates within the community, the best option for children and the general population is to employ consistent high-quality masking, and use social distancing where possible.


2016 ◽  
Author(s):  
Joel C Miller

AbstractThe emergence of diseases such as Zika and Ebola has highlighted the need to understand the role of sexual transmission in the spread of diseases with a primarily non-sexual transmission route. In this paper we develop a number of low-dimensional models which are appropriate for a range of assumptions for how a disease will spread if it has sexual transmission through a sexual contact network combined with some other transmission mechanism, such as direct contact or vectors. The equations derived provide exact predictions for the dynamics of the corresponding simulations in the large population limit.


2020 ◽  
Author(s):  
Edward M Hill ◽  
Benjamin D Atkins ◽  
Matt J Keeling ◽  
Louise Dyson ◽  
Michael J Tildesley

Background: As part of a concerted pandemic response to protect public health, businesses can enact non-pharmaceutical controls to minimise exposure to pathogens in workplaces and premises open to the public. Amendments to working practices can lead to the amount, duration and/or proximity of interactions being changed, ultimately altering the dynamics of disease spread. These modifications could be specific to the type of business being operated. Methods: We use a data-driven approach to parameterise an individual-based network model for transmission of SARS-CoV-2 amongst the working population, stratified into work sectors. The network is comprised of layered contacts to consider risk of spread in multiple encounter settings (workplaces, households, social and other). We analyse several interventions targeted towards working practices: mandating a fraction of the population to work from home, using temporally asynchronous work patterns and introducing measures to create `COVID-secure' workplaces. We also assess the general role of adherence to (or effectiveness of) isolation and test and trace measures and demonstrate the impact of all these interventions across a variety of relevant metrics. Results: The progress of the epidemic can be significantly hindered by instructing a significant proportion of the workforce to work from home. Furthermore, if required to be present at the workplace, asynchronous work patterns can help to reduce infections when compared with scenarios where all workers work on the same days, particularly for longer working weeks. When assessing COVID-secure workplace measures, we found that smaller work teams and a greater reduction in transmission risk led to a flatter temporal profile for both infections and the number of people isolating, and reduced the probability of large, long outbreaks. Finally, following isolation guidance and engaging with contact tracing alone is an effective tool to curb transmission, but is highly sensitive to adherence levels. Conclusions: In the absence of sufficient adherence to non-pharmaceutical interventions, our results indicate a high likelihood of SARS-CoV-2 spreading widely throughout a worker population. Given the heterogeneity of demographic attributes across worker roles, in addition to the individual nature of controls such as contact tracing, we demonstrate the utility of a network model approach to investigate workplace-targeted intervention strategies and the role of test, trace and isolation in tackling disease spread.


2020 ◽  
Vol 21 (22) ◽  
pp. 8806
Author(s):  
Rita Rezzani ◽  
Caterina Franco ◽  
Rüdiger Hardeland ◽  
Luigi Fabrizio Rodella

For years the thymus gland (TG) and the pineal gland (PG) have been subject of increasingly in-depth studies, but only recently a link that can associate the activities of the two organs has been identified. Considering, on the one hand, the well-known immune activity of thymus and, on the other, the increasingly emerging immunological roles of circadian oscillators and the rhythmically secreted main pineal product, melatonin, many studies aimed to analyse the possible existence of an interaction between these two systems. Moreover, data confirmed that the immune system is functionally associated with the nervous and endocrine systems determining an integrated dynamic network. In addition, recent researches showed a similar, characteristic involution process both in TG and PG. Since the second half of the 20th century, evidence led to the definition of an effectively interacting thymus-pineal axis (TG-PG axis), but much has to be done. In this sense, the aim of this review is to summarize what is actually known about this topic, focusing on the impact of the TG-PG axis on human life and ageing. We would like to give more emphasis to the implications of this dynamical interaction in a possible therapeutic strategy for human health. Moreover, we focused on all the products of TG and PG in order to collect what is known about the role of peptides other than melatonin. The results available today are often unclear and not linear. These peptides have not been well studied and defined over the years. In this review we hope to awake the interest of the scientific community in them and in their future pharmacological applications.


2013 ◽  
Vol 44 (5) ◽  
pp. 311-319 ◽  
Author(s):  
Marco Brambilla ◽  
David A. Butz

Two studies examined the impact of macrolevel symbolic threat on intergroup attitudes. In Study 1 (N = 71), participants exposed to a macrosymbolic threat (vs. nonsymbolic threat and neutral topic) reported less support toward social policies concerning gay men, an outgroup whose stereotypes implies a threat to values, but not toward welfare recipients, a social group whose stereotypes do not imply a threat to values. Study 2 (N = 78) showed that, whereas macrolevel symbolic threat led to less favorable attitudes toward gay men, macroeconomic threat led to less favorable attitudes toward Asians, an outgroup whose stereotypes imply an economic threat. These findings are discussed in terms of their implications for understanding the role of a general climate of threat in shaping intergroup attitudes.


Sign in / Sign up

Export Citation Format

Share Document