scholarly journals Applying meta-analysis to Genotype-Tissue Expression data from multiple tissues to identify eQTLs and increase the number of eGenes

2017 ◽  
Author(s):  
Dat Duong ◽  
Lisa Gai ◽  
Sagi Snir ◽  
Eun Yong Kang ◽  
Buhm Han ◽  
...  

AbstractDuring the last decade, with the advent of inexpensive microarray and RNA-seq technologies, there have been many expression quantitative trait loci (eQTL) studies for identifying genetic variants called eQTLs that regulate gene expression. Discovering eQTLs has been increasingly important as they may elucidate the functional consequence of non-coding variants identified from genome-wide association studies. Recently, several eQTL studies such as the Genotype-Tissue Expression (GTEx) consortium have made a great effort to obtain gene expression from multiple tissues. One advantage of these multi-tissue eQTL datasets is that they may allow one to identify more eQTLs by combining information across multiple tissues. Although a few methods have been proposed for multi-tissue eQTL studies, they are often computationally intensive and may not achieve optimal power because they do not consider a biological insight that a genetic variant regulates gene expression similarly in related tissues. In this paper, we propose an efficient meta-analysis approach for identifying eQTLs from large multi-tissue eQTL datasets. We name our method RECOV because it uses a random effects (RE) meta-analysis with an explicit covariance (COV) term to model the correlation of effect that eQTLs have across tissues. Our approach is faster than the previous approaches and properly controls the false-positive rate. We apply our approach to the real multi-tissue eQTL dataset from GTEx that contains 44 tissues, and show that our approach detects more eQTLs and eGenes than previous approaches.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jamie W. Robinson ◽  
Richard M. Martin ◽  
Spiridon Tsavachidis ◽  
Amy E. Howell ◽  
Caroline L. Relton ◽  
...  

AbstractGenome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet to be systematically explored. We integrated multi-tissue expression quantitative trait loci (eQTLs) and glioma GWAS data using a combined Mendelian randomisation (MR) and colocalisation approach. We investigated how genetically predicted gene expression affects risk across tissue type (brain, estimated effective n = 1194 and whole blood, n = 31,684) and glioma subtype (all glioma (7400 cases, 8257 controls) glioblastoma (GBM, 3112 cases) and non-GBM gliomas (2411 cases)). We also leveraged tissue-specific eQTLs collected from 13 brain tissues (n = 114 to 209). The MR and colocalisation results suggested that genetically predicted increased gene expression of 12 genes were associated with glioma, GBM and/or non-GBM risk, three of which are novel glioma susceptibility genes (RETREG2/FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene expression appears to be relatively consistent across glioma subtype diagnoses. Examining how risk differed across 13 brain tissues highlighted five candidate tissues (cerebellum, cortex, and the putamen, nucleus accumbens and caudate basal ganglia) and four previously implicated genes (JAK1, STMN3, PICK1 and EGFR). These analyses identified robust causal evidence for 12 genes and glioma risk, three of which are novel. The correlation of MR estimates in brain and blood are consistently low which suggested that tissue specificity needs to be carefully considered for glioma. Our results have implicated genes yet to be associated with glioma susceptibility and provided insight into putatively causal pathways for glioma risk.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Aitana Alonso-Gonzalez ◽  
Manuel Calaza ◽  
Cristina Rodriguez-Fontenla ◽  
Angel Carracedo

Abstract Background Attention-Deficit Hyperactivity Disorder (ADHD) is a complex neurodevelopmental disorder (NDD) which may significantly impact on the affected individual’s life. ADHD is acknowledged to have a high heritability component (70–80%). Recently, a meta-analysis of GWAS (Genome Wide Association Studies) has demonstrated the association of several independent loci. Our main aim here, is to apply PASCAL (pathway scoring algorithm), a new gene-based analysis (GBA) method, to the summary statistics obtained in this meta-analysis. PASCAL will take into account the linkage disequilibrium (LD) across genomic regions in a different way than the most commonly employed GBA methods (MAGMA or VEGAS (Versatile Gene-based Association Study)). In addition to PASCAL analysis a gene network and an enrichment analysis for KEGG and GO terms were carried out. Moreover, GENE2FUNC tool was employed to create gene expression heatmaps and to carry out a (DEG) (Differentially Expressed Gene) analysis using GTEX v7 and BrainSpan data. Results PASCAL results have revealed the association of new loci with ADHD and it has also highlighted other genes previously reported by MAGMA analysis. PASCAL was able to discover new associations at a gene level for ADHD: FEZF1 (p-value: 2.2 × 10− 7) and FEZF1-AS1 (p-value: 4.58 × 10− 7). In addition, PASCAL has been able to highlight association of other genes that share the same LD block with some previously reported ADHD susceptibility genes. Gene network analysis has revealed several interactors with the associated ADHD genes and different GO and KEGG terms have been associated. In addition, GENE2FUNC has demonstrated the existence of several up and down regulated expression clusters when the associated genes and their interactors were considered. Conclusions PASCAL has been revealed as an efficient tool to extract additional information from previous GWAS using their summary statistics. This study has identified novel ADHD associated genes that were not previously reported when other GBA methods were employed. Moreover, a biological insight into the biological function of the ADHD associated genes across brain regions and neurodevelopmental stages is provided.


2018 ◽  
Author(s):  
Cox Lwaka Tamba ◽  
Yuan-Ming Zhang

AbstractBackgroundRecent developments in technology result in the generation of big data. In genome-wide association studies (GWAS), we can get tens of million SNPs that need to be tested for association with a trait of interest. Indeed, this poses a great computational challenge. There is a need for developing fast algorithms in GWAS methodologies. These algorithms must ensure high power in QTN detection, high accuracy in QTN estimation and low false positive rate.ResultsHere, we accelerated mrMLM algorithm by using GEMMA idea, matrix transformations and identities. The target functions and derivatives in vector/matrix forms for each marker scanning are transformed into some simple forms that are easy and efficient to evaluate during each optimization step. All potentially associated QTNs with P-values ≤ 0.01 are evaluated in a multi-locus model by LARS algorithm and/or EM-Empirical Bayes. We call the algorithm FASTmrMLM. Numerical simulation studies and real data analysis validated the FASTmrMLM. FASTmrMLM reduces the running time in mrMLM by more than 50%. FASTmrMLM also shows high statistical power in QTN detection, high accuracy in QTN estimation and low false positive rate as compared to GEMMA, FarmCPU and mrMLM. Real data analysis shows that FASTmrMLM was able to detect more previously reported genes than all the other methods: GEMMA/EMMA, FarmCPU and mrMLM.ConclusionsFASTmrMLM is a fast and reliable algorithm in multi-locus GWAS and ensures high statistical power, high accuracy of estimates and low false positive rate.Author SummaryThe current developments in technology result in the generation of a vast amount of data. In genome-wide association studies, we can get tens of million markers that need to be tested for association with a trait of interest. Due to the computational challenge faced, we developed a fast algorithm for genome-wide association studies. Our approach is a two stage method. In the first step, we used matrix transformations and identities to quicken the testing of each random marker effect. The target functions and derivatives which are in vector/matrix forms for each marker scanning are transformed into some simple forms that are easy and efficient to evaluate during each optimization step. In the second step, we selected all potentially associated SNPs and evaluated them in a multi-locus model. From simulation studies, our algorithm significantly reduces the computing time. The new method also shows high statistical power in detecting significant markers, high accuracy in marker effect estimation and low false positive rate. We also used the new method to identify relevant genes in real data analysis. We recommend our approach as a fast and reliable method for carrying out a multi-locus genome-wide association study.


2014 ◽  
Author(s):  
Sune Pletscher-Frankild ◽  
Albert Pallejà ◽  
Kalliopi Tsafou ◽  
Janos X Binder ◽  
Lars Juhl Jensen

Text mining is a flexible technology that can be applied to numerous different tasks in biology and medicine. We present a system for extracting disease–gene associations from biomedical abstracts. The system consists of a highly efficient dictionary-based tagger for named entity recognition of human genes and diseases, which we combine with a scoring scheme that takes into account co-occurrences both within and between sentences. We show that this approach is able to extract half of all manually curated associations with a false positive rate of only 0.16%. Nonetheless, text mining should not stand alone, but be combined with other types of evidence. For this reason, we have developed the DISEASES resource, which integrates the results from text mining with manually curated disease–gene associations, cancer mutation data, and genome-wide association studies from existing databases. The DISEASES resource is accessible through a user-friendly web interface at http://diseases.jensenlab.org/, where the text-mining software and all associations are also freely available for download.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Zhenyao Ye ◽  
Chen Mo ◽  
Hongjie Ke ◽  
Qi Yan ◽  
Chixiang Chen ◽  
...  

Genome-wide association studies (GWAS) have identified and reproduced thousands of diseases associated loci, but many of them are not directly interpretable due to the strong linkage disequilibrium among variants. Transcriptome-wide association studies (TWAS) incorporated expression quantitative trait loci (eQTL) cohorts as a reference panel to detect associations with the phenotype at the gene level and have been gaining popularity in recent years. For nicotine addiction, several important susceptible genetic variants were identified by GWAS, but TWAS that detected genes associated with nicotine addiction and unveiled the underlying molecular mechanism were still lacking. In this study, we used eQTL data from the Genotype-Tissue Expression (GTEx) consortium as a reference panel to conduct tissue-specific TWAS on cigarettes per day (CPD) over thirteen brain tissues in two large cohorts: UK Biobank (UKBB; number of participants (N) = 142,202) and the GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN; N = 143,210), then meta-analyzing the results across tissues while considering the heterogeneity across tissues. We identified three major clusters of genes with different meta-patterns across tissues consistent in both cohorts, including homogenous genes associated with CPD in all brain tissues; partially homogeneous genes associated with CPD in cortex, cerebellum, and hippocampus tissues; and, lastly, the tissue-specific genes associated with CPD in only a few specific brain tissues. Downstream enrichment analyses on each gene cluster identified unique biological pathways associated with CPD and provided important biological insights into the regulatory mechanism of nicotine dependence in the brain.


2019 ◽  
Vol 35 (17) ◽  
pp. 3046-3054 ◽  
Author(s):  
Anastasia Gurinovich ◽  
Harold Bae ◽  
John J Farrell ◽  
Stacy L Andersen ◽  
Stefano Monti ◽  
...  

Abstract Motivation Over the last decade, more diverse populations have been included in genome-wide association studies. If a genetic variant has a varying effect on a phenotype in different populations, genome-wide association studies applied to a dataset as a whole may not pinpoint such differences. It is especially important to be able to identify population-specific effects of genetic variants in studies that would eventually lead to development of diagnostic tests or drug discovery. Results In this paper, we propose PopCluster: an algorithm to automatically discover subsets of individuals in which the genetic effects of a variant are statistically different. PopCluster provides a simple framework to directly analyze genotype data without prior knowledge of subjects’ ethnicities. PopCluster combines logistic regression modeling, principal component analysis, hierarchical clustering and a recursive bottom-up tree parsing procedure. The evaluation of PopCluster suggests that the algorithm has a stable low false positive rate (∼4%) and high true positive rate (>80%) in simulations with large differences in allele frequencies between cases and controls. Application of PopCluster to data from genetic studies of longevity discovers ethnicity-dependent heterogeneity in the association of rs3764814 (USP42) with the phenotype. Availability and implementation PopCluster was implemented using the R programming language, PLINK and Eigensoft software, and can be found at the following GitHub repository: https://github.com/gurinovich/PopCluster with instructions on its installation and usage. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wenhan Chen ◽  
Yang Wu ◽  
Zhili Zheng ◽  
Ting Qi ◽  
Peter M. Visscher ◽  
...  

AbstractSummary statistics from genome-wide association studies (GWAS) have facilitated the development of various summary data-based methods, which typically require a reference sample for linkage disequilibrium (LD) estimation. Analyses using these methods may be biased by errors in GWAS summary data or LD reference or heterogeneity between GWAS and LD reference. Here we propose a quality control method, DENTIST, that leverages LD among genetic variants to detect and eliminate errors in GWAS or LD reference and heterogeneity between the two. Through simulations, we demonstrate that DENTIST substantially reduces false-positive rate in detecting secondary signals in the summary-data-based conditional and joint association analysis, especially for imputed rare variants (false-positive rate reduced from >28% to <2% in the presence of heterogeneity between GWAS and LD reference). We further show that DENTIST can improve other summary-data-based analyses such as fine-mapping analysis.


2020 ◽  
Author(s):  
Wenhan Chen ◽  
Yang Wu ◽  
Zhili Zheng ◽  
Ting Qi ◽  
Peter M Visscher ◽  
...  

AbstractSummary statistics from genome-wide association studies (GWAS) have facilitated the development of various summary data-based methods, which typically require a reference sample for linkage disequilibrium (LD) estimation. Analyses using these methods may be biased by errors in GWAS summary data and heterogeneity between GWAS and LD reference. Here we propose a quality control method, DENTIST, that leverages LD among genetic variants to detect and eliminate errors in GWAS or LD reference and heterogeneity between the two. Through simulations, we demonstrate that DENTIST substantially reduces false-positive rate (FPR) in detecting secondary signals in the summary-data-based conditional and joint (COJO) association analysis, especially for imputed rare variants (FPR reduced from >28% to <2% in the presence of ancestral difference between GWAS and LD reference). We further show that DENTIST can improve other summary-data-based analyses such as LD score regression analysis, and integrative analysis of GWAS and expression quantitative trait locus data.


2018 ◽  
Author(s):  
Angli Xue ◽  
Yang Wu ◽  
Zhihong Zhu ◽  
Futao Zhang ◽  
Kathryn E Kemper ◽  
...  

AbstractWe conducted a meta-analysis of genome-wide association studies (GWAS) with ∼16 million genotyped/imputed genetic variants in 62,892 type 2 diabetes (T2D) cases and 596,424 controls of European ancestry. We identified 139 common and 4 rare (minor allele frequency < 0.01) variants associated with T2D, 42 of which (39 common and 3 rare variants) were independent of the known variants. Integration of the gene expression data from blood (n = 14,115 and 2,765) and other T2D-relevant tissues (n = up to 385) with the GWAS results identified 33 putative functional genes for T2D, three of which were targeted by approved drugs. A further integration of DNA methylation (n = 1,980) and epigenomic annotations data highlighted three putative T2D genes (CAMK1D, TP53INP1 and ATP5G1) with plausible regulatory mechanisms whereby a genetic variant exerts an effect on T2D through epigenetic regulation of gene expression. We further found evidence that the T2D-associated loci have been under purifying selection.


Sign in / Sign up

Export Citation Format

Share Document