scholarly journals Division of labor, bet hedging, and the evolution of mixed biofilm investment strategies

2017 ◽  
Author(s):  
Nick Vallespir Lowery ◽  
Luke McNally ◽  
William C. Ratcliff ◽  
Sam P. Brown

ABSTRACTBacterial cells, like many other organisms, face a tradeoff between longevity and fecundity. Planktonic cells are fast growing and fragile, while biofilm cells are often slower growing but stress resistant. Here we ask: why do bacterial lineages invest simultaneously in both fast and slow growing types? We develop a population dynamical model of lineage expansion across a patchy environment, and find that mixed investment is favored across a broad range of environmental conditions, even when transmission is entirely via biofilm cells. This mixed strategy is favored because of a division of labor, where exponentially dividing planktonic cells can act as an engine for the production of future biofilm cells, which grow more slowly. We use experimental evolution to test our predictions, and show that phenotypic heterogeneity is persistent even under selection for purely planktonic or purely biofilm transmission. Furthermore, simulations suggest that maintenance of a biofilm subpopulation serves as a cost-effective hedge against environmental uncertainty, which is also consistent with our experimental findings.

mBio ◽  
2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Ellie Harrison ◽  
A. Jamie Wood ◽  
Calvin Dytham ◽  
Jonathan W. Pitchford ◽  
Julie Truman ◽  
...  

ABSTRACTBacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria interact to determine the dynamics of conjugative plasmids and their persistence. The ecological effects of bacteriophages on bacteria are predicted to limit the existence conditions for conjugative plasmids, preventing persistence under weak selection for plasmid accessory traits. Experiments showed that phages drove faster extinction of plasmids in environments where the plasmid conferred no benefit, but they also revealed more complex effects of phages on plasmid dynamics under these conditions, specifically, the temporary maintenance of plasmids at fixation followed by rapid loss. We hypothesized that the population genetic effects of bacteriophages, specifically, selection for phage resistance mutations, may have caused this. Further mathematical modeling and individual-based simulations supported our hypothesis, showing that conjugative plasmids may hitchhike with phage resistance mutations in the bacterial chromosome.IMPORTANCEConjugative plasmids are infectious loops of DNA capable of transmitting DNA between bacterial cells and between species. Because plasmids often carry extra genes that allow bacteria to live in otherwise-inhospitable environments, their dynamics are central to understanding bacterial adaptive evolution. The plasmid-bacterium interaction has typically been studied in isolation, but in natural bacterial communities, bacteriophages, viruses that infect bacteria, are ubiquitous. Using experiments, mathematical models, and computer simulations we show that bacteriophages drive plasmid dynamics through their ecological and evolutionary effects on bacteria and ultimately limit the conditions allowing plasmid existence. These results advance our understanding of bacterial adaptation and show that bacteriophages could be used to select against plasmids carrying undesirable traits, such as antibiotic resistance.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Nick Vallespir Lowery ◽  
Luke McNally ◽  
William C. Ratcliff ◽  
Sam P. Brown

ABSTRACT Bacterial cells, like many other organisms, face a tradeoff between longevity and fecundity. Planktonic cells are fast growing and fragile, while biofilm cells are often slower growing but stress resistant. Here we ask why bacterial lineages invest simultaneously in both fast- and slow-growing types. We develop a population dynamic model of lineage expansion across a patchy environment and find that mixed investment is favored across a broad range of environmental conditions, even when transmission is entirely via biofilm cells. This mixed strategy is favored because of a division of labor where exponentially dividing planktonic cells can act as an engine for the production of future biofilm cells, which grow more slowly. We use experimental evolution to test our predictions and show that phenotypic heterogeneity is persistent even under selection for purely planktonic or purely biofilm transmission. Furthermore, simulations suggest that maintenance of a biofilm subpopulation serves as a cost-effective hedge against environmental uncertainty, which is also consistent with our experimental findings. IMPORTANCE Cell types specialized for survival have been observed and described within clonal bacterial populations for decades, but why are these specialists continually produced under benign conditions when such investment comes at a high reproductive cost? Conversely, when survival becomes an imperative, does it ever benefit the population to maintain a pool of rapidly growing but vulnerable planktonic cells? Using a combination of mathematical modeling, simulations, and experiments, we find that mixed investment strategies are favored over a broad range of environmental conditions and rely on a division of labor between cell types, where reproductive specialists amplify survival specialists, which can be transmitted through the environment with a limited mortality rate. We also show that survival specialists benefit rapidly growing populations by serving as a hedge against unpredictable changes in the environment. These results help to clarify the general evolutionary and ecological forces that can generate and maintain diverse subtypes within clonal bacterial populations. Cell types specialized for survival have been observed and described within clonal bacterial populations for decades, but why are these specialists continually produced under benign conditions when such investment comes at a high reproductive cost? Conversely, when survival becomes an imperative, does it ever benefit the population to maintain a pool of rapidly growing but vulnerable planktonic cells? Using a combination of mathematical modeling, simulations, and experiments, we find that mixed investment strategies are favored over a broad range of environmental conditions and rely on a division of labor between cell types, where reproductive specialists amplify survival specialists, which can be transmitted through the environment with a limited mortality rate. We also show that survival specialists benefit rapidly growing populations by serving as a hedge against unpredictable changes in the environment. These results help to clarify the general evolutionary and ecological forces that can generate and maintain diverse subtypes within clonal bacterial populations.


2015 ◽  
Author(s):  
Snigdhadip Dey ◽  
Steve Proulx ◽  
Henrique Teotonio

Most organisms live in ever-challenging temporally fluctuating environments. Theory suggests that the evolution of anticipatory (or deterministic) maternal effects underlies adaptation to environments that regularly fluctuate every other generation because of selection for increased offspring performance. Evolution of maternal bet-hedging reproductive strategies that randomize offspring phenotypes is in turn expected to underlie adaptation to irregularly fluctuating environments. Although maternal effects are ubiquitous their adaptive significance is unknown since they can easily evolve as a correlated response to selection for increased maternal performance. Using the nematode Caenorhabditis elegans, we show the experimental evolution of maternal provisioning of offspring with glycogen, in populations facing a novel anoxia hatching environment every other generation. As expected with the evolution of deterministic maternal effects, improved embryo hatching survival under anoxia evolved at the expense of fecundity and glycogen provisioning when mothers experienced anoxia early in life. Unexpectedly, populations facing an irregularly fluctuating anoxia hatching environment failed to evolve maternal bet-hedging reproductive strategies. Instead, adaptation in these populations should have occurred through the evolution of balancing trade-offs over multiple generations, since they evolved reduced fitness over successive generations in anoxia but did not go extinct during experimental evolution. Mathematical modelling confirms our conclusion that adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that they are generally much more likely to contribute to adaptation than maternal bet-hedging reproductive strategies.


2015 ◽  
Author(s):  
Bram Kuijper ◽  
Rufus A Johnstone

Abstract Despite growing evidence for nongenetic inheritance, the ecological conditions that favor the evolution of heritable parental or grandparental effects remain poorly understood. Here, we systematically explore the evolution of parental effects in a patch-structured population with locally changing environments. When selection favors the production of a mix of offspring types, this mix differs according to the parental phenotype, implying that parental effects are favored over selection for bet-hedging in which the mixture of offspring phenotypes produced does not depend on the parental phenotype. Positive parental effects (generating a positive correlation between parental and offspring phenotype) are favored in relatively stable habitats and when different types of local environment are roughly equally abundant, and can give rise to long-term parental inheritance of phenotypes. By contrast, unstable habitats can favor negative parental effects (generating a negative correlation between parental and offspring phenotype), and under these circumstances even slight asymmetries in the abundance of local environmental states select for marked asymmetries in transmission fidelity.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Robyn Jerdan ◽  
Scott Cameron ◽  
Emily Donaldson ◽  
Andrew Spiers

Static microcosms are a well-established system used to study the adaptive radiation of Pseudomonas fluorescens SBW25 and the adaptive biofilm-forming mutants known as the Wrinkly Spreaders (WS). We have developed this system to investigate selection within multi-species communities using a soil-wash inoculum dominated by biofilm-competent pseudomonads. Here we present community and isolate-level analyses of one serial-transfer experiment in which replicate populations were selected for over ten transfers and 60 days. Although no significant trends in improving community biofilm characteristics or total microcosm productivity were observed, a significant shift in biofilm-formation and microcosm growth by individual isolates recovered from the initial soil-wash inoculum and final transfers indicated that these communities were subject to selection for growth in these microcosms. Surprisingly, the fitness of the archetypal WS was poor when competing against community samples, and having compared the cell densities in the low-O2 region of liquid column below the biofilm, we suggest that part of the community’s fitness advantage comes from the ability to colonise this under-utilised niche as well as to compete at the A-L interface. Samples from the community biofilms and the low-O2 region were able to re-colonize both niches and many final transfer isolates grew throughout the liquid column as well as forming A-L interface biofilms. This suggests that there is a trade-off between fast growth under highly competitive conditions at the A-L interface and slower growth with less competition in the low-O2 region, with some isolates taking a bet-hedging approach a colonizing both niches in our microcosm system.


Author(s):  
G Simm ◽  
W S Dingwall ◽  
S V Murphy ◽  
J FitzSimons ◽  
W R Brown

It is likely that returns from lamb production in future will depend, much more than at present, on producing leaner carcasses. There are several short-term changes in management which could produce leaner carcasses. However, In the longer term genetic Improvement, particularly by within-breed selection In terminal sire breeds, is likely to provide permanent, cumulative and cost-effective benefits In carcass composition. In the early 1980s a research project was started at the Edinburgh School of Agriculture, using Suffolk sheep, to examine the genetic potential for Improving carcass composition In terminal sires. The work commenced with an evaluation of techniques for in vivo measurement of carcass composition (Simm, 1987) and derivation of selection indices to incorporate In vivo measurements (Simm and Dingwall, 1989). Since 1985 In vivo measurement and Index selection have been practised In the experimental flock, which now numbers about 220 ewes. This paper reports the interim results of selection.


2020 ◽  
Vol 32 (12) ◽  
pp. 2297-2309
Author(s):  
Kai Han ◽  
Yuntian He ◽  
Keke Huang ◽  
Xiaokui Xiao ◽  
Shaojie Tang ◽  
...  

2019 ◽  
Vol 286 (1916) ◽  
pp. 20192070 ◽  
Author(s):  
Thomas R. Haaland ◽  
Jonathan Wright ◽  
Irja I. Ratikainen

In order to understand how organisms cope with ongoing changes in environmental variability, it is necessary to consider multiple adaptations to environmental uncertainty on different time scales. Conservative bet-hedging (CBH) represents a long-term genotype-level strategy maximizing lineage geometric mean fitness in stochastic environments by decreasing individual fitness variance, despite also lowering arithmetic mean fitness. Meanwhile, variance-prone (aka risk-prone) strategies produce greater variance in short-term payoffs, because this increases expected arithmetic mean fitness if the relationship between payoffs and fitness is accelerating. Using evolutionary simulation models, we investigate whether selection for such variance-prone strategies is counteracted by selection for bet-hedging that works to adaptively reduce fitness variance. In our model, variance proneness evolves in fine-grained environments (lower correlations among individuals in energetic state and/or payoffs), and with larger numbers of independent decision events over which resources accumulate prior to selection. Conversely, multiplicative fitness accumulation, caused by coarser environmental grain and fewer decision events selection, favours CBH via greater variance aversion. We discuss examples of variance-sensitive strategies in optimal foraging, migration, life histories and cooperative breeding using this bet-hedging perspective. By linking disparate fields of research studying adaptations to variable environments, we should be better able to understand effects of human-induced rapid environmental change.


Sign in / Sign up

Export Citation Format

Share Document