scholarly journals Large-scale structure prediction by improved contact predictions and model quality assessment

2017 ◽  
Author(s):  
Mirco Michel ◽  
David Menéndez Hurtado ◽  
Karolis Uziela ◽  
Arne Elofsson

AbstractMotivationAccurate contact predictions can be used for predicting the structure of proteins. Until recently these methods were limited to very big protein families, decreasing their utility. However, recent progress by combining direct coupling analysis with machine learning methods has made it possible to predict accurate contact maps for smaller families. To what extent these predictions can be used to produce accurate models of the families is not known.ResultsWe present the PconsFold2 pipeline that uses contact predictions from PconsC3, the CONFOLD folding algorithm and model quality estimations to predict the structure of a protein. We show that the model quality estimation significantly increases the number of models that reliably can be identified. Finally, we apply PconsFold2 to 6379 Pfam families of unknown structure and find that PconsFold2 can, with an estimated 90% specificity, predict the structure of up to 558 Pfam families of unknown structure. Out of these 415 have not been reported before.AvailabilityDatasets as well as models of all the 558 Pfam families are available at http://c3.pcons.net/. All programs used here are freely [email protected] informationNo supplementary data

2017 ◽  
Vol 33 (14) ◽  
pp. i23-i29 ◽  
Author(s):  
Mirco Michel ◽  
David Menéndez Hurtado ◽  
Karolis Uziela ◽  
Arne Elofsson

2020 ◽  
Vol 36 (11) ◽  
pp. 3385-3392
Author(s):  
Zi-Lin Liu ◽  
Jing-Hao Hu ◽  
Fan Jiang ◽  
Yun-Dong Wu

Abstract Motivation High-throughput sequencing discovers many naturally occurring disulfide-rich peptides or cystine-rich peptides (CRPs) with diversified bioactivities. However, their structure information, which is very important to peptide drug discovery, is still very limited. Results We have developed a CRP-specific structure prediction method called Cystine-Rich peptide Structure Prediction (CRiSP), based on a customized template database with cystine-specific sequence alignment and three machine-learning predictors. The modeling accuracy is significantly better than several popular general-purpose structure modeling methods, and our CRiSP can provide useful model quality estimations. Availability and implementation The CRiSP server is freely available on the website at http://wulab.com.cn/CRISP. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Caroline Ross ◽  
Bilal Nizami ◽  
Michael Glenister ◽  
Olivier Sheik Amamuddy ◽  
Ali Rana Atilgan ◽  
...  

AbstractSummaryMODE-TASK, a novel software suite, comprises Principle Component Analysis, Multidimensional Scaling, and t-Distributed Stochastic Neighbor Embedding techniques using molecular dynamics trajectories. MODE-TASK also includes a Normal Mode Analysis tool based on Anisotropic Network Model so as to provide a variety of ways to analyse and compare large-scale motions of protein complexes for which long MD simulations are prohibitive.Availability and ImplementationMODE-TASK has been open-sourced, and is available for download from https://github.com/RUBi-ZA/MODE-TASK, implemented in Python and C++.Supplementary informationDocumentation available at http://mode-task.readthedocs.io.


2018 ◽  
Author(s):  
Lucas Czech ◽  
Alexandros Stamatakis

AbstractMotivationIn most metagenomic sequencing studies, the initial analysis step consists in assessing the evolutionary provenance of the sequences. Phylogenetic (or Evolutionary) Placement methods can be employed to determine the evolutionary position of sequences with respect to a given reference phylogeny. These placement methods do however face certain limitations: The manual selection of reference sequences is labor-intensive; the computational effort to infer reference phylogenies is substantially larger than for methods that rely on sequence similarity; the number of taxa in the reference phylogeny should be small enough to allow for visually inspecting the results.ResultsWe present algorithms to overcome the above limitations. First, we introduce a method to automatically construct representative sequences from databases to infer reference phylogenies. Second, we present an approach for conducting large-scale phylogenetic placements on nested phylogenies. Third, we describe a preprocessing pipeline that allows for handling huge sequence data sets. Our experiments on empirical data show that our methods substantially accelerate the workflow and yield highly accurate placement results.ImplementationFreely available under GPLv3 at http://github.com/lczech/[email protected] InformationSupplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (12) ◽  
pp. 3749-3757 ◽  
Author(s):  
Wei Zheng ◽  
Xiaogen Zhou ◽  
Qiqige Wuyun ◽  
Robin Pearce ◽  
Yang Li ◽  
...  

Abstract Motivation Protein domains are subunits that can fold and function independently. Correct domain boundary assignment is thus a critical step toward accurate protein structure and function analyses. There is, however, no efficient algorithm available for accurate domain prediction from sequence. The problem is particularly challenging for proteins with discontinuous domains, which consist of domain segments that are separated along the sequence. Results We developed a new algorithm, FUpred, which predicts protein domain boundaries utilizing contact maps created by deep residual neural networks coupled with coevolutionary precision matrices. The core idea of the algorithm is to retrieve domain boundary locations by maximizing the number of intra-domain contacts, while minimizing the number of inter-domain contacts from the contact maps. FUpred was tested on a large-scale dataset consisting of 2549 proteins and generated correct single- and multi-domain classifications with a Matthew’s correlation coefficient of 0.799, which was 19.1% (or 5.3%) higher than the best machine learning (or threading)-based method. For proteins with discontinuous domains, the domain boundary detection and normalized domain overlapping scores of FUpred were 0.788 and 0.521, respectively, which were 17.3% and 23.8% higher than the best control method. The results demonstrate a new avenue to accurately detect domain composition from sequence alone, especially for discontinuous, multi-domain proteins. Availability and implementation https://zhanglab.ccmb.med.umich.edu/FUpred. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Lisha Ye ◽  
Peikun Wu ◽  
Zhenling Peng ◽  
Jianzhao Gao ◽  
Jian Liu ◽  
...  

Abstract Motivation Protein model quality assessment (QA) is an essential component in protein structure prediction, which aims to estimate the quality of a structure model and/or select the most accurate model out from a pool of structure models, without knowing the native structure. QA remains a challenging task in protein structure prediction. Results Based on the inter-residue distance predicted by the recent deep learning-based structure prediction algorithm trRosetta, we developed QDistance, a new approach to the estimation of both global and local qualities. QDistance works for both single-model and multi-models inputs. We designed several distance-based features to assess the agreement between the predicted and model-derived inter-residue distances. Together with a few widely used features, they are fed into a simple yet powerful linear regression model to infer the global QA scores. The local QA scores for each structure model are predicted based on a comparative analysis with a set of selected reference models. For multi-models input, the reference models are selected from the input based on the predicted global QA scores. For single-model input, the reference models are predicted by trRosetta. With the informative distance-based features, QDistance can predict the global quality with satisfactory accuracy. Benchmark tests on the CASP13 and the CAMEO structure models suggested that QDistance was competitive other methods. Blind tests in the CASP14 experiments showed that QDistance was robust and ranked among the top predictors. Especially, QDistance was the top 3 local QA method and made the most accurate local QA prediction for unreliable local region. Analysis showed that this superior performance can be attributed to the inclusion of the predicted inter-residue distance. Availability and Implementation http://yanglab.nankai.edu.cn/QDistance Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (7) ◽  
pp. 2264-2265 ◽  
Author(s):  
Mehari B Zerihun ◽  
Fabrizio Pucci ◽  
Emanuel K Peter ◽  
Alexander Schug

Abstract Motivation The ongoing advances in sequencing technologies have provided a massive increase in the availability of sequence data. This made it possible to study the patterns of correlated substitution between residues in families of homologous proteins or RNAs and to retrieve structural and stability information. Direct coupling analysis (DCA) infers coevolutionary couplings between pairs of residues indicating their spatial proximity, making such information a valuable input for subsequent structure prediction. Results Here, we present pydca, a standalone Python-based software package for the DCA of protein- and RNA-homologous families. It is based on two popular inverse statistical approaches, namely, the mean-field and the pseudo-likelihood maximization and is equipped with a series of functionalities that range from multiple sequence alignment trimming to contact map visualization. Thanks to its efficient implementation, features and user-friendly command line interface, pydca is a modular and easy-to-use tool that can be used by researchers with a wide range of backgrounds. Availability and implementation pydca can be obtained from https://github.com/KIT-MBS/pydca or from the Python Package Index under the MIT License. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (14) ◽  
pp. 2403-2410 ◽  
Author(s):  
Jack Hanson ◽  
Kuldip Paliwal ◽  
Thomas Litfin ◽  
Yuedong Yang ◽  
Yaoqi Zhou

Abstract Motivation Sequence-based prediction of one dimensional structural properties of proteins has been a long-standing subproblem of protein structure prediction. Recently, prediction accuracy has been significantly improved due to the rapid expansion of protein sequence and structure libraries and advances in deep learning techniques, such as residual convolutional networks (ResNets) and Long-Short-Term Memory Cells in Bidirectional Recurrent Neural Networks (LSTM-BRNNs). Here we leverage an ensemble of LSTM-BRNN and ResNet models, together with predicted residue-residue contact maps, to continue the push towards the attainable limit of prediction for 3- and 8-state secondary structure, backbone angles (θ, τ, ϕ and ψ), half-sphere exposure, contact numbers and solvent accessible surface area (ASA). Results The new method, named SPOT-1D, achieves similar, high performance on a large validation set and test set (≈1000 proteins in each set), suggesting robust performance for unseen data. For the large test set, it achieves 87% and 77% in 3- and 8-state secondary structure prediction and 0.82 and 0.86 in correlation coefficients between predicted and measured ASA and contact numbers, respectively. Comparison to current state-of-the-art techniques reveals substantial improvement in secondary structure and backbone angle prediction. In particular, 44% of 40-residue fragment structures constructed from predicted backbone Cα-based θ and τ angles are less than 6 Å root-mean-squared-distance from their native conformations, nearly 20% better than the next best. The method is expected to be useful for advancing protein structure and function prediction. Availability and implementation SPOT-1D and its data is available at: http://sparks-lab.org/. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Bo Wang ◽  
Daniele Ramazzotti ◽  
Luca De Sano ◽  
Junjie Zhu ◽  
Emma Pierson ◽  
...  

AbstractMotivationWe here present SIMLR (Single-cell Interpretation via Multi-kernel LeaRning), an open-source tool that implements a novel framework to learn a cell-to-cell similarity measure from single-cell RNA-seq data. SIMLR can be effectively used to perform tasks such as dimension reduction, clustering, and visualization of heterogeneous populations of cells. SIMLR was benchmarked against state-of-the-art methods for these three tasks on several public datasets, showing it to be scalable and capable of greatly improving clustering performance, as well as providing valuable insights by making the data more interpretable via better a visualization.Availability and ImplementationSIMLR is available on GitHub in both R and MATLAB implementations. Furthermore, it is also available as an R package on [email protected] or [email protected] InformationSupplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document