scholarly journals Over-expression of the RieskeFeS protein increases electron transport rates and yield in Arabidopsis

2017 ◽  
Author(s):  
Andrew J. Simkin ◽  
Lorna McAusland ◽  
Tracy Lawson ◽  
Christine A. Raines

AbstractIn this study we have generated transgenic Arabidopsis plants over-expressing the Rieske FeS protein (PetC), a component of the cytochrome b6f (cyt b6f) complex. Increasing the levels of this protein, resulted in the concomitant increase in the levels of cyt f (PetA) and cyt b6 (PetB), core proteins of the cyt b6f complex. Interestingly, an increase in the levels of proteins in both the PSI and PSII complexes was also seen in the Rieske FeS ox plants. Although the mechanisms leading to these changes remain to be identified, the transgenic plants presented here provide novel tools to explore this. Importantly, the overexpression of the Rieske FeS protein resulted in a substantial and significant impact on the quantum efficiency of PSI and PSII, electron transport, biomass and seed yield in Arabidopsis plants. These results demonstrate the potential for manipulating electron transport processes to increase crop productivity.One-sentence summaryOver-expression of the Rieske FeS protein results in significant increases in the quantum efficiencies or PSI and PSII, increases in Amax and has the potential to increase crop productivity

2007 ◽  
Vol 85 (3) ◽  
pp. 252-262 ◽  
Author(s):  
Allen G. Good ◽  
Susan J. Johnson ◽  
Mary De Pauw ◽  
Rebecka T. Carroll ◽  
Nic Savidov ◽  
...  

Nitrogen (N) is the most important factor limiting crop productivity worldwide. The ability of plants to acquire N from applied fertilizers is one of the critical steps limiting the efficient use of nitrogen. To improve N use efficiency, genetically modified plants that overexpress alanine aminotransferase (AlaAT) were engineered by introducing a barley AlaAT cDNA driven by a canola root specific promoter (btg26). Compared with wild-type canola, transgenic plants had increased biomass and seed yield both in the laboratory and field under low N conditions, whereas no differences were observed under high N. The transgenics also had increased nitrate influx. These changes resulted in a 40% decrease in the amount of applied nitrogen fertilizer required under field conditions to achieve yields equivalent to wild-type plants.


2021 ◽  
Author(s):  
Chandra Bellasio ◽  
Maria Ermakova

When C4 plants are exposed to low light, CO2 concentration in the bundle sheath (BS) decreases, causing an increase in photorespiration, leakiness (the ratio of CO2 leak rate out of the BS over the rate of supply via C4 acid decarboxylation), and a consequent reduction in biochemical efficiency. This can to some extent be mitigated by complex acclimation syndromes, which are of primary importance for crop productivity, but not well studied. We unveil a strategy of leaf-level low light acclimation involving regulation of electron transport processes. Firstly, we characterise anatomy, gas-exchange and electron transport of Setaria viridis grown under low light. Through a newly developed biochemical model we resolve the photon fluxes, and reaction rates to explain how these concerted acclimation strategies sustain photosynthetic efficiency. Smaller BS in low light-grown plants limited leakiness but sacrificed light harvesting and ATP production. To counter ATP shortage and maintain high assimilation rates, plants facilitated light penetration through mesophyll and upregulated cyclic electron flow in the BS. This novel shade tolerance mechanism based on optimisation of light reactions is more efficient than the known mechanisms involving the rearrangement of dark reactions and can potentially lead to innovative strategies for crop improvement.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jie Gao ◽  
Tongxin Dou ◽  
Weidi He ◽  
Ou Sheng ◽  
Fangcheng Bi ◽  
...  

Abstract Background Banana is a tropical fruit with a high economic impact worldwide. Cold stress greatly affects the development and production of banana. Results In the present study, we investigated the functions of MaMAPK3 and MaICE1 involved in cold tolerance of banana. The effect of RNAi of MaMAPK3 on Dajiao (Musa spp. ‘Dajiao’; ABB Group) cold tolerance was evaluated. The leaves of the MaMAPK3 RNAi transgenic plants showed wilting and severe necrotic symptoms, while the wide-type (WT) plants remained normal after cold exposure. RNAi of MaMAPK3 significantly changed the expressions of the cold-responsive genes, and the oxidoreductase activity was significantly changed in WT plants, while no changes in transgenic plants were observed. MaICE1 interacted with MaMAPK3, and the expression level of MaICE1 was significantly decreased in MaMAPK3 RNAi transgenic plants. Over-expression of MaICE1 in Cavendish banana (Musa spp. AAA group) indicated that the cold resistance of transgenic plants was superior to that of the WT plants. The POD P7 gene was significantly up-regulated in MaICE1-overexpressing transgenic plants compared with WT plants, and the POD P7 was proved to interact with MaICE1. Conclusions Taken together, our work provided new and solid evidence that MaMAPK3-MaICE1-MaPOD P7 pathway positively improved the cold tolerance in monocotyledon banana, shedding light on molecular breeding for the cold-tolerant banana or other agricultural species.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Henricus T. S. Boschker ◽  
Perran L. M. Cook ◽  
Lubos Polerecky ◽  
Raghavendran Thiruvallur Eachambadi ◽  
Helena Lozano ◽  
...  

AbstractFilamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.


2018 ◽  
Vol 64 (No. 8) ◽  
pp. 379-385 ◽  
Author(s):  
Zhu Bo ◽  
Han Hongjuan ◽  
Fu Xiaoyan ◽  
Li Zhenjun ◽  
Gao Jianjie ◽  
...  

The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. TNT is toxic to many organisms, it is known to be a potential human carcinogen, and is persistent in the environment. This study presents a system of phytoremediation by Arabidopsis plants developed on the basis of overexpression of NAD(P)H-flavin nitroreductase (NFSB) from the Sulfurimonas denitrificans DSM1251. The resulting transgenic Arabidopsis plants demonstrated significantly enhanced TNT tolerance and a strikingly higher capacity to remove TNT from their media. The highest specific rate constant of TNT disappearance rate was 1.219 and 2.297 mL/g fresh weight/h for wild type and transgenic plants, respectively. Meanwhile, the nitroreductase activity in transgenic plant was higher than wild type plant. All this indicates that transgenic plants show significantly enhanced tolerances to TNT; transgenic plants also exhibit strikingly higher capabilities of removing TNT from their media and high efficiencies of transformation.


2006 ◽  
Vol 33 (2) ◽  
pp. 153 ◽  
Author(s):  
Mohammad S. Hoque ◽  
Josette Masle ◽  
Michael K. Udvardi ◽  
Peter R. Ryan ◽  
Narayana M. Upadhyaya

A transgenic approach was undertaken to investigate the role of a rice ammonium transporter (OsAMT1-1) in ammonium uptake and consequent ammonium assimilation under different nitrogen regimes. Transgenic lines overexpressing OsAMT1-1 were produced by Agrobacterium-mediated transformation of two rice cultivars, Taipei 309 and Jarrah, with an OsAMT1-1 cDNA gene construct driven by the maize ubiquitin promoter. Transcript levels of OsAMT1-1 in both Taipei 309 and Jarrah transgenic lines correlated positively with transgene copy number. Shoot and root biomass of some transgenic lines decreased during seedling and early vegetative stage compared to the wild type, especially when grown under high (2 mm) ammonium nutrition. Transgenic plants, particularly those of cv. Jarrah recovered in the mid-vegetative stage under high ammonium nutrition. Roots of the transgenic plants showed increased ammonium uptake and ammonium content. We conclude that the decreased biomass of the transgenic lines at early stages of growth might be caused by the accumulation of ammonium in the roots owing to the inability of ammonium assimilation to match the greater ammonium uptake.


Sign in / Sign up

Export Citation Format

Share Document