scholarly journals TiSAn: Estimating Tissue Specific Effects of Coding and Noncoding Variants

2017 ◽  
Author(s):  
Kévin Vervier ◽  
Jacob J. Michaelson

AbstractMeasures of general deleteriousness, like CADD or PolyPhen, have become indispensable tools in the interpretation of genetic variants. However, these measures say little about where in the organism these deleterious effects will be most apparent. An additional, complementary measure is needed to link deleterious variants (as determined by e.g., CADD) to tissues in which their effect will be most meaningful. Here, we introduce TiSAn (Tissue Specific Annotation), a tool that predicts how related a genomic position is to a given tissue (http://github.com/kevinVervier/TiSAn). TiSAn uses machine learning on genome-scale, tissue-specific data to discriminate variants relevant to a tissue from those having no bearing on the development or function of that tissue. Predictions are then made genome-wide, and these scores can then be used to contextualize and filter variants of interest in whole genome sequencing or genome wide association studies (GWAS). We demonstrate the accuracy and versatility of TiSAn by introducing predictive models for human heart and human brain, and detecting tissue-relevant variations in large cohorts for autism spectrum disorder (TiSAn-brain) and coronary artery disease (TiSAn-heart). We find that TiSAn is better able to prioritize genetic variants according to their tissue-specific action than the current state of the art method, GenoSkyLine.

2019 ◽  
Author(s):  
Tom G Richardson ◽  
Gibran Hemani ◽  
Tom R Gaunt ◽  
Caroline L Relton ◽  
George Davey Smith

AbstractBackgroundDeveloping insight into tissue-specific transcriptional mechanisms can help improve our understanding of how genetic variants exert their effects on complex traits and disease. By applying the principles of Mendelian randomization, we have undertaken a systematic analysis to evaluate transcriptome-wide associations between gene expression across 48 different tissue types and 395 complex traits.ResultsOverall, we identified 100,025 gene-trait associations based on conventional genome-wide corrections (P < 5 × 10−08) that also provided evidence of genetic colocalization. These results indicated that genetic variants which influence gene expression levels in multiple tissues are more likely to influence multiple complex traits. We identified many examples of tissue-specific effects, such as genetically-predicted TPO, NR3C2 and SPATA13 expression only associating with thyroid disease in thyroid tissue. Additionally, FBN2 expression was associated with both cardiovascular and lung function traits, but only when analysed in heart and lung tissue respectively.We also demonstrate that conducting phenome-wide evaluations of our results can help flag adverse on-target side effects for therapeutic intervention, as well as propose drug repositioning opportunities. Moreover, we find that exploring the tissue-dependency of associations identified by genome-wide association studies (GWAS) can help elucidate the causal genes and tissues responsible for effects, as well as uncover putative novel associations.ConclusionsThe atlas of tissue-dependent associations we have constructed should prove extremely valuable to future studies investigating the genetic determinants of complex disease. The follow-up analyses we have performed in this study are merely a guide for future research. Conducting similar evaluations can be undertaken systematically at http://mrcieu.mrsoftware.org/Tissue_MR_atlas/.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
M Oguri ◽  
K Kato ◽  
H Horibe ◽  
T Fujimaki ◽  
J Sakuma ◽  
...  

Abstract Background Early-onset coronary artery disease (CAD) has a strong genetic component. Although genome-wide association studies have identified various genes and loci significantly associated with CAD mainly in European ancestry populations, genetic variants that contribute to susceptibility to this condition in Japanese individuals remain to be identified definitively. Purpose The purpose of the study was to identify genetic variants that confer susceptibility to early-onset CAD in Japanese. We have now performed exome-wide association studies (EWASs) in subjects with early-onset CAD and controls. Methods A total of 7256 individuals aged ≤65 years was enrolled in the study. The EWAS was conducted with 1482 subjects with CAD and 5774 controls. Genotyping of single nucleotide polymorphisms (SNPs) was performed with Illumina Human Exome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of allele frequencies for 31,465 SNPs that passed quality control to CAD was examined with Fisher's exact test. To compensate for multiple comparisons of allele frequencies with CAD, we applied a false discovery rate (FDR) of <0.05 for statistical significance of association. Results The relation of allele frequencies for 31,465 SNPs to CAD with the use of Fisher's exact test showed that 170 SNPs were significantly (FDR <0.05) associated with CAD. Multivariable logistic regression analysis with adjustment for age, sex, and the prevalence of hypertension, diabetes mellitus, and dyslipidemia revealed that 162 SNPs were significantly (P<0.05) related to CAD. A stepwise forward selection procedure was performed to examine the effects of genotypes for the 162 SNPs on CAD. The 54 SNPs were significant (P<0.05) and independent [coefficient of determination (R2), 0.0008 to 0.0297] determinants of CAD. These SNPs together accounted for 15.5% of the cause of CAD. After examination of results from previous genome-wide association studies and linkage disequilibrium of the identified SNPs, we newly identified 21 genes (RNF2, YEATS2, USP45, ITGB8, TNS3, FAM170B-AS1, PRKG1, BTRC, MKI67, STIM1, OR52E4, KIAA1551, MON2, PLUT, LINC00354, TRPM1, ADAT1, KRT27, LIPE, GFY, EIF3L) and five chromosomal regions (2p13, 4q31.2, 5q12, 13q34, 20q13.2) that were significantly associated with CAD. Gene ontology analysis showed that various biological functions were predicted in the 18 genes identified in the present study. The network analysis revealed that the 18 genes had potential direct or indirect interactions with the 30 genes previously shown to be associated with CAD or with the 228 genes identified in previous genome-wide association studies of CAD. Conclusion We have newly identified 26 loci that confer susceptibility to CAD. Determination of genotypes for the SNPs at these loci may prove informative for assessment of the genetic risk for CAD in Japanese.


Author(s):  
Yang Li ◽  
Han Yan ◽  
Jian Guo ◽  
Yingchun Han ◽  
Cuifang Zhang ◽  
...  

Abstract Aims Genetic contribution to coronary artery disease (CAD) remains largely unillustrated. Although transcriptomic profiles have identified dozens of genes that are differentially expressed in normal and atherosclerotic vessels, whether those genes are genetically associated with CAD remains to be determined. Here, we combined genetic association studies, transcriptome profiles and in vitro and in vivo functional experiments to identify novel susceptibility genes for CAD. Methods and results Through an integrative analysis of transcriptome profiles with genome-wide association studies for CAD, we obtained 18 candidate genes and selected one representative single nucleotide polymorphism (SNP) for each gene for multi-centred validations. We identified an intragenic SNP, rs1056515 in RGS5 gene (odds ratio = 1.17, 95% confidence interval =1.10–1.24, P = 3.72 × 10−8) associated with CAD at genome-wide significance. Rare genetic variants in linkage disequilibrium with rs1056515 were identified in CAD patients leading to a decreased expression of RGS5. The decreased expression was also observed in atherosclerotic vessels and endothelial cells treated by various cardiovascular risk factors. Through siRNA knockdown and adenoviral overexpression, we further showed that RGS5 regulated endothelial inflammation, vascular remodelling, as well as canonical NF-κB signalling activation. Moreover, CXCL12, a specific downstream target of the non-canonical NF-κB pathway, was strongly affected by RGS5. However, the p100 processing, a well-documented marker for non-canonical NF-κB pathway activation, was not altered, suggesting an existence of a novel mechanism by which RGS5 regulates CXCL12. Conclusions We identified RGS5 as a novel susceptibility gene for CAD and showed that the decreased expression of RGS5 impaired endothelial cell function and functionally contributed to atherosclerosis through a variety of molecular mechanisms. How RGS5 regulates the expression of CXCL12 needs further studies.


2015 ◽  
Author(s):  
Qiongshi Lu ◽  
Ryan Lee Powles ◽  
Qian Wang ◽  
Beixin Julie He ◽  
Hongyu Zhao

Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies. Integrative analysis of GenoSkyline annotations and results from genome-wide association studies (GWAS) led to novel biological insights on the etiologies of a number of human complex traits. We also explored using tissue-specific functional annotations to prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and blood-specific annotations led to better prioritization performance for schizophrenia than standard GWAS p-values and non-tissue-specific annotations. As for coronary artery disease, heart-specific functional regions was highly enriched of GWAS signals, but previously identified risk loci were found to be most functional in other tissues, suggesting a substantial proportion of still undetected heart-related loci. In summary, GenoSkyline annotations can guide genetic studies at multiple resolutions and provide valuable insights in understanding complex diseases. GenoSkyline is available at http://genocanyon.med.yale.edu/GenoSkyline.


2021 ◽  
Author(s):  
Sarah Nadeau ◽  
Christian W. Thorball ◽  
Roger Kouyos ◽  
Huldrych F. Günthard ◽  
Jürg Böni ◽  
...  

AbstractInfectious diseases are a unique challenge for genome-wide association studies (GWAS) because pathogen, host, and environmental factors can all affect disease traits. Previous GWAS have successfully identified several human genetic variants associated with HIV-1 set point viral load (spVL), among other important infectious disease traits. However, these GWAS do not account for potentially confounding or extraneous pathogen effects that are heritable from donor to recipient in transmission chains. We propose a new method to consider the full genome of each patient’s infecting pathogen strain, remove strain-specific effects on a trait based on the pathogen phylogeny, and thus better estimate the effect of human genetic variants on infectious disease traits. In simulations, we show our method can increase GWAS power to detect truly associated host variants when pathogen effects are highly heritable, with strong phylogenetic correlations. When we apply our method to HIV-1 subtype B data from the Swiss HIV Cohort Study, we recover slightly weaker but qualitatively similar signals of association between spVL and human genetic variants in the CCR5 and major histocompatibility complex (MHC) gene regions compared to standard GWAS. Our simulation study confirms that based on the estimated heritability and selection parameters for HIV-1 subtype B spVL, standard GWAS are robust to pathogen effects. Our framework may improve GWAS for other diseases if pathogen effects are even more phylogenetically correlated amongst individuals in a cohort.


2019 ◽  
Vol 26 (34) ◽  
pp. 6207-6221 ◽  
Author(s):  
Innocenzo Rainero ◽  
Alessandro Vacca ◽  
Flora Govone ◽  
Annalisa Gai ◽  
Lorenzo Pinessi ◽  
...  

Migraine is a common, chronic neurovascular disorder caused by a complex interaction between genetic and environmental risk factors. In the last two decades, molecular genetics of migraine have been intensively investigated. In a few cases, migraine is transmitted as a monogenic disorder, and the disease phenotype cosegregates with mutations in different genes like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine, candidate genes as well as genome-wide association studies have shown that a large number of genetic variants may increase the risk of developing migraine. At present, few studies investigated the genotype-phenotype correlation in patients with migraine. The purpose of this review was to discuss recent studies investigating the relationship between different genetic variants and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in migraineurs is complicated by several confounding factors and, to date, only polymorphisms of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional genomic studies and network analyses are needed to clarify the complex pathways underlying migraine and its clinical phenotypes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuquan Rao ◽  
Yao Yao ◽  
Daniel E. Bauer

AbstractGenome-wide association studies (GWAS) have uncovered thousands of genetic variants that influence risk for human diseases and traits. Yet understanding the mechanisms by which these genetic variants, mainly noncoding, have an impact on associated diseases and traits remains a significant hurdle. In this review, we discuss emerging experimental approaches that are being applied for functional studies of causal variants and translational advances from GWAS findings to disease prevention and treatment. We highlight the use of genome editing technologies in GWAS functional studies to modify genomic sequences, with proof-of-principle examples. We discuss the challenges in interrogating causal variants, points for consideration in experimental design and interpretation of GWAS locus mechanisms, and the potential for novel therapeutic opportunities. With the accumulation of knowledge of functional genetics, therapeutic genome editing based on GWAS discoveries will become increasingly feasible.


Author(s):  
Jianhua Wang ◽  
Dandan Huang ◽  
Yao Zhou ◽  
Hongcheng Yao ◽  
Huanhuan Liu ◽  
...  

Abstract Genome-wide association studies (GWASs) have revolutionized the field of complex trait genetics over the past decade, yet for most of the significant genotype-phenotype associations the true causal variants remain unknown. Identifying and interpreting how causal genetic variants confer disease susceptibility is still a big challenge. Herein we introduce a new database, CAUSALdb, to integrate the most comprehensive GWAS summary statistics to date and identify credible sets of potential causal variants using uniformly processed fine-mapping. The database has six major features: it (i) curates 3052 high-quality, fine-mappable GWAS summary statistics across five human super-populations and 2629 unique traits; (ii) estimates causal probabilities of all genetic variants in GWAS significant loci using three state-of-the-art fine-mapping tools; (iii) maps the reported traits to a powerful ontology MeSH, making it simple for users to browse studies on the trait tree; (iv) incorporates highly interactive Manhattan and LocusZoom-like plots to allow visualization of credible sets in a single web page more efficiently; (v) enables online comparison of causal relations on variant-, gene- and trait-levels among studies with different sample sizes or populations and (vi) offers comprehensive variant annotations by integrating massive base-wise and allele-specific functional annotations. CAUSALdb is freely available at http://mulinlab.org/causaldb.


2021 ◽  
Author(s):  
Ronald J Yurko ◽  
Kathryn Roeder ◽  
Bernie Devlin ◽  
Max G'Sell

In genome-wide association studies (GWAS), it has become commonplace to test millions of SNPs for phenotypic association. Gene-based testing can improve power to detect weak signal by reducing multiple testing and pooling signal strength. While such tests account for linkage disequilibrium (LD) structure of SNP alleles within each gene, current approaches do not capture LD of SNPs falling in different nearby genes, which can induce correlation of gene-based test statistics. We introduce an algorithm to account for this correlation. When a gene's test statistic is independent of others, it is assessed separately; when test statistics for nearby genes are strongly correlated, their SNPs are agglomerated and tested as a locus. To provide insight into SNPs and genes driving association within loci, we develop an interactive visualization tool to explore localized signal. We demonstrate our approach in the context of weakly powered GWAS for autism spectrum disorder, which is contrasted to more highly powered GWAS for schizophrenia and educational attainment. To increase power for these analyses, especially those for autism, we use adaptive p-value thresholding (AdaPT), guided by high-dimensional metadata modeled with gradient boosted trees, highlighting when and how it can be most useful. Notably our workflow is based on summary statistics.


2011 ◽  
Vol 40 (D1) ◽  
pp. D1047-D1054 ◽  
Author(s):  
Mulin Jun Li ◽  
Panwen Wang ◽  
Xiaorong Liu ◽  
Ee Lyn Lim ◽  
Zhangyong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document