scholarly journals A functional connectome phenotyping dataset including cognitive state and personality measures

2017 ◽  
Author(s):  
Natacha Mendes ◽  
Sabine Oligschläger ◽  
Mark E. Lauckner ◽  
Johannes Golchert ◽  
Julia M. Huntenburg ◽  
...  

AbstractThe dataset enables exploration of higher-order cognitive faculties, self-generated mental experience, and personality features in relation to the intrinsic functional architecture of the brain. We provide multimodal magnetic resonance imaging (MRI) data and a broad set of state and trait phenotypic assessments: mind-wandering, personality traits, and cognitive abilities. Specifically, 194 healthy participants (between 20 and 75 years of age) filled out 31 questionnaires, performed 7 tasks, and reported 4 probes of in-scanner mind-wandering. The scanning session included four 15.5-min resting-state functional MRI runs using a multiband EPI sequence and a high-resolution structural scan using a 3D MP2RAGE sequence. This dataset constitutes one part of the MPI-Leipzig Mind-Brain-Body database.

2019 ◽  
Vol 50 (05) ◽  
pp. 313-317 ◽  
Author(s):  
Vykuntaraju K. Gowda ◽  
Varunvenkat M. Srinivasan ◽  
Kapil Jehta ◽  
Maya D. Bhat

Abstract Background SLC25A19 gene mutations cause Amish congenital lethal microcephaly and bilateral striatal necrosis with polyneuropathy. We are reporting two cases of bilateral striatal necrosis with polyneuropathy due to SLC25A19 gene mutations. Methods A 36-month-old boy and a 5-year-old girl, unrelated, presented with recurrent episodes of flaccid paralysis and encephalopathy following nonspecific febrile illness. Examination showed dystonia and absent deep tendon reflexes. Results Nerve conduction studies showed an axonal polyneuropathy. Magnetic resonance imaging (MRI) of the brain in both cases showed signal changes in the basal ganglia. Next-generation sequencing revealed a novel homozygous missense variation c.910G>A (p.Glu304Lys) in the SLC25A19 gene in the boy and a homozygous mutation c.869T > A (p. Leu290Gln) in the SLC25A19 gene in the girl. Mutations were validated by Sanger sequencing, and carrier statuses of parents of both children were confirmed. Both children improved with thiamine supplementation. Conclusion If any child presents with recurrent encephalopathy with flaccid paralysis, dystonia, and neuropathy, a diagnosis of bilateral striatal necrosis with polyneuropathy due to SLC25A19 mutations should be considered and thiamine should be initiated.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2104 ◽  
Author(s):  
Eleonora Ficiarà ◽  
Shoeb Anwar Ansari ◽  
Monica Argenziano ◽  
Luigi Cangemi ◽  
Chiara Monge ◽  
...  

Magnetic Oxygen-Loaded Nanobubbles (MOLNBs), manufactured by adding Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on the surface of polymeric nanobubbles, are investigated as theranostic carriers for delivering oxygen and chemotherapy to brain tumors. Physicochemical and cyto-toxicological properties and in vitro internalization by human brain microvascular endothelial cells as well as the motion of MOLNBs in a static magnetic field were investigated. MOLNBs are safe oxygen-loaded vectors able to overcome the brain membranes and drivable through the Central Nervous System (CNS) to deliver their cargoes to specific sites of interest. In addition, MOLNBs are monitorable either via Magnetic Resonance Imaging (MRI) or Ultrasound (US) sonography. MOLNBs can find application in targeting brain tumors since they can enhance conventional radiotherapy and deliver chemotherapy being driven by ad hoc tailored magnetic fields under MRI and/or US monitoring.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 973
Author(s):  
Thomas R. Zentall

The humane treatment of animals suggests that they should be housed in an environment that is rich in stimulation and allows for varied activities. However, even if one’s main concern is an accurate assessment of their learning and cognitive abilities, housing them in an enriched environment can have an important effect on the assessment of those abilities. Research has found that the development of the brain of animals is significantly affected by the environment in which they live. Not surprisingly, their ability to learn both simple and complex tasks is affected by even modest time spent in an enriched environment. In particular, animals that are housed in an enriched environment are less impulsive and make more optimal choices than animals housed in isolation. Even the way that they judge the passage of time is affected by their housing conditions. Some researchers have even suggested that exposing animals to an enriched environment can make them more “optimistic” in how they treat ambiguous stimuli. Whether that behavioral effect reflects the subtlety of differences in optimism/pessimism or something simpler, like differences in motivation, incentive, discriminability, or neophobia, it is clear that the conditions of housing can have an important effect on the learning and cognition of animals.


2020 ◽  
Vol 31 (8) ◽  
pp. 803-816
Author(s):  
Umberto di Porzio

AbstractThe environment increased complexity required more neural functions to develop in the hominin brains, and the hominins adapted to the complexity by developing a bigger brain with a greater interconnection between its parts. Thus, complex environments drove the growth of the brain. In about two million years during hominin evolution, the brain increased three folds in size, one of the largest and most complex amongst mammals, relative to body size. The size increase has led to anatomical reorganization and complex neuronal interactions in a relatively small skull. At birth, the human brain is only about 20% of its adult size. That facilitates the passage through the birth canal. Therefore, the human brain, especially cortex, develops postnatally in a rich stimulating environment with continuous brain wiring and rewiring and insertion of billions of new neurons. One of the consequence is that in the newborn brain, neuroplasticity is always turned “on” and it remains active throughout life, which gave humans the ability to adapt to complex and often hostile environments, integrate external experiences, solve problems, elaborate abstract ideas and innovative technologies, store a lot of information. Besides, hominins acquired unique abilities as music, language, and intense social cooperation. Overwhelming ecological, social, and cultural challenges have made the human brain so unique. From these events, as well as the molecular genetic changes that took place in those million years, under the pressure of natural selection, derive the distinctive cognitive abilities that have led us to complex social organizations and made our species successful.


Author(s):  
Muhammad Irfan Sharif ◽  
Jian Ping Li ◽  
Javeria Amin ◽  
Abida Sharif

AbstractBrain tumor is a group of anomalous cells. The brain is enclosed in a more rigid skull. The abnormal cell grows and initiates a tumor. Detection of tumor is a complicated task due to irregular tumor shape. The proposed technique contains four phases, which are lesion enhancement, feature extraction and selection for classification, localization, and segmentation. The magnetic resonance imaging (MRI) images are noisy due to certain factors, such as image acquisition, and fluctuation in magnetic field coil. Therefore, a homomorphic wavelet filer is used for noise reduction. Later, extracted features from inceptionv3 pre-trained model and informative features are selected using a non-dominated sorted genetic algorithm (NSGA). The optimized features are forwarded for classification after which tumor slices are passed to YOLOv2-inceptionv3 model designed for the localization of tumor region such that features are extracted from depth-concatenation (mixed-4) layer of inceptionv3 model and supplied to YOLOv2. The localized images are passed toMcCulloch'sKapur entropy method to segment actual tumor region. Finally, the proposed technique is validated on three benchmark databases BRATS 2018, BRATS 2019, and BRATS 2020 for tumor detection. The proposed method achieved greater than 0.90 prediction scores in localization, segmentation and classification of brain lesions. Moreover, classification and segmentation outcomes are superior as compared to existing methods.


Author(s):  
Dominic Gascho ◽  
Michael J. Thali ◽  
Rosa M. Martinez ◽  
Stephan A. Bolliger

AbstractThe computed tomography (CT) scan of a 19-year-old man who died from an occipito-frontal gunshot wound presented an impressive radiating fracture line where the entire sagittal suture burst due to the high intracranial pressure that arose from a near-contact shot from a 9 mm bullet fired from a Glock 17 pistol. Photorealistic depictions of the radiating fracture lines along the cranial bones were created using three-dimensional reconstruction methods, such as the novel cinematic rendering technique that simulates the propagation and interaction of light when it passes through volumetric data. Since the brain had collapsed, depiction of soft tissue was insufficient on CT images. An additional magnetic resonance imaging (MRI) examination was performed, which enabled the diagnostic assessment of cerebral injuries.


Author(s):  
Renjie Wang ◽  
Yankun Shao ◽  
Lei Xu

Introduction: The medulla oblongata is the lowest segment of the brain stem, located adjacent to the spinal cord, with a complex anatomical structure. Thus, a small injury to the medulla oblongata can show complex clinical manifestations. Case Presentation: A patient experienced dysesthesia, which manifested as numbness in her right lower limb and decreased temperature sense, and dizziness 20 days before admission. The numbness worsened 1 week before admission, reaching the right thoracic (T) 12 dermatomes. Her thermoception below the T12 dermatomes decreased, and the degree of dizziness increased, accompanied by nausea and vomiting. Magnetic resonance imaging (MRI) of the neck, chest, and abdomen performed at a local hospital showed no abnormalities. MRI of the brain was performed after admission. One week after admission, she experienced a severe headache in the upper left periorbital area. The numbness extended to T4, and thermoception decreased below T4. Diagnosis: Lateral medullary infarction. Interventions: Anti-platelet aggregation and mitochondrial nutritional therapies were performed along with treatments for improving circulation and establishing collateral circulation. Outcomes: The intensity of limb numbness decreased, and the symptoms of headache and dizziness resolved. Conclusion: Lesions leading to segmental sensory disorders can occur in the medulla oblongata. Ipsilateral headaches with contralateral segmental paresthesia can be a specific sign of lateral medullary infarction.


Author(s):  
Josef P. Rauschecker

When one talks about hearing, some may first imagine the auricle (or external ear), which is the only visible part of the auditory system in humans and other mammals. Its shape and size vary among people, but it does not tell us much about a person’s abilities to hear (except perhaps their ability to localize sounds in space, where the shape of the auricle plays a certain role). Most of what is used for hearing is inside the head, particularly in the brain. The inner ear transforms mechanical vibrations into electrical signals; then the auditory nerve sends these signals into the brainstem, where intricate preprocessing occurs. Although auditory brainstem mechanisms are an important part of central auditory processing, it is the processing taking place in the cerebral cortex (with the thalamus as the mediator), which enables auditory perception and cognition. Human speech and the appreciation of music can hardly be imagined without a complex cortical network of specialized regions, each contributing different aspects of auditory cognitive abilities. During the evolution of these abilities in higher vertebrates, especially birds and mammals, the cortex played a crucial role, so a great deal of what is referred to as central auditory processing happens there. Whether it is the recognition of one’s mother’s voice, listening to Pavarotti singing or Yo-Yo Ma playing the cello, hearing or reading Shakespeare’s sonnets, it will evoke electrical vibrations in the auditory cortex, but it does not end there. Large parts of frontal and parietal cortex receive auditory signals originating in auditory cortex, forming processing streams for auditory object recognition and auditory-motor control, before being channeled into other parts of the brain for comprehension and enjoyment.


1998 ◽  
Vol 28 (3) ◽  
pp. 655-663 ◽  
Author(s):  
P. NOPOULOS ◽  
M. FLAUM ◽  
S. ARNDT ◽  
N. ANDREASEN

Background. Morphometry, the measurement of forms, is an ancient practice. In particular, schizophrenic somatology was popular early in this century, but has been essentially absent from the literature for over 30 years. More recently, evidence has grown to support the notion that aberrant neurodevelopment may play a role in the pathophysiology of schizophrenia. Is the body, like the brain, affected by abnormal development in these patients?Methods. To evaluate global deficit in development and its relationship to pre-morbid function, height was compared in a large group (N=226) of male schizophrenics and a group of healthy male controls (N=142) equivalent in parental socio-economic status. Patients in the lower quartile of height were compared to those in the upper quartile of height.Results. The patient group had a mean height of 177·1 cm, which was significantly shorter than the mean height of the control group of 179·4 (P<0·003). Those in the lower quartile had significantly poorer pre-morbid function as measured by: (1) psychosocial adjustment using the pre-morbid adjustment scales for childhood and adolescence/young adulthood, and (2) cognitive function using measures of school performance such as grades and need for special education. In addition, these measures of pre-morbid function correlated significantly with height when analysed using the entire sample.Conclusions. These findings provide further support to the idea that abnormal development may play a key role in the pathophysiology of schizophrenia. Furthermore, this is manifested as a global deficit in growth and function resulting in smaller stature, poorer social skills, and deficits in cognitive abilities.


Sign in / Sign up

Export Citation Format

Share Document