scholarly journals A neuronal thermostat controls membrane fluidity in C. elegans

2019 ◽  
Author(s):  
L Chauve ◽  
S Murdoch ◽  
F. Masoudzadeh ◽  
F. Hodge ◽  
A. Lopez-Clavijo ◽  
...  

SummaryAn organisms’ ability to adapt to heat can be key to its survival. Cells adapt to temperature shifts by adjusting lipid desaturation levels and the fluidity of membranes in a process that is thought to be controlled cell autonomously. We have discovered that subtle, step-wise increments in ambient temperature can lead to the conserved heat shock response being activated in head neurons of C. elegans. This response is exactly opposite to the expression of the lipid desaturase FAT-7 in the worm’s gut. We find that the over-expression of the master regulator of this response, Hsf-1, in head neurons, causes extensive fat remodeling to occur across tissues. These changes include a decrease in FAT-7 expression and a shift in the levels of unsaturated fatty acids in the plasma membrane. These shifts are in line with membrane fluidity requirements to survive in warmer temperatures. We have identified that the cGMP receptor, TAX-2/TAX-4, as well as TGF-β/BMP signaling, as key players in the transmission of neuronal stress to peripheral tissues. This is the first study to suggest that a thermostat-based mechanism can centrally coordinate membrane fluidity in response to warm temperatures across tissues in multicellular animals.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Mario Ruiz ◽  
Marcus Henricsson ◽  
Jan Borén ◽  
Marc Pilon

Abstract Background AdipoR1 and AdipoR2 (AdipoRs) are plasma membrane proteins often considered to act as adiponectin receptors with a ceramidase activity. Additionally, the AdipoRs and their yeast and C. elegans orthologs are emerging as membrane homeostasis regulators that counter membrane rigidification by promoting fatty acid desaturation and incorporation of unsaturated fatty acids into phospholipids, thus restoring fluidity. Methods Using cultured cells, the effects of AdipoR silencing or over-expression on the levels and composition of several sphingolipid classes were examined. Results AdipoR2 silencing in the presence of exogenous palmitic acid potently causes increased levels of dihydroceramides, a ceramide precursor in the de novo ceramide synthesis pathway. Conversely, AdipoR2 over-expression caused a depletion of dihydroceramides. Conclusions The results are consistent with AdipoR2 silencing leading to increased intracellular supply of palmitic acid that in turn leads to increased dihydroceramide synthesis via the rate-limiting serine palmitoyl transferase step. In agreement with this model, inhibiting the desaturase SCD or SREBF1/2 (positive regulators of SCD) also causes a strong increase in dihydroceramide levels.


Development ◽  
2013 ◽  
Vol 140 (19) ◽  
pp. 4070-4080 ◽  
Author(s):  
Chenxi Tian ◽  
Herong Shi ◽  
Shan Xiong ◽  
Fenghua Hu ◽  
Wen-Cheng Xiong ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
Zhe Cao ◽  
Yan Hao ◽  
Yiu Yiu Lee ◽  
Pengfei Wang ◽  
Xuesong Li ◽  
...  

AbstractExogenous metabolites from microbial and dietary origins have profound effects on host metabolism. Here, we report that a sub-population of lipid droplets (LDs), which are conserved organelles for fat storage, is defined by metabolites-driven targeting of theC. elegansseipin ortholog, SEIP-1. Loss of SEIP-1 function reduced the size of a subset of LDs while over-expression of SEIP-1 had the opposite effect. Ultrastructural analysis revealed SEIP-1 enrichment in an endoplasmic reticulum (ER) subdomain, which co-purified with LDs. Analyses ofC. elegansand bacterial genetic mutants indicated a requirement of polyunsaturated fatty acids (PUFAs) and microbial cyclopropane fatty acids (CFAs) for SEIP-1 enrichment, as confirmed by dietary supplementation experiments. In mammalian cells, heterologous expression of SEIP-1 promoted lipid droplet expansion from ER subdomains in a conserved manner. Our results suggest that microbial and polyunsaturated fatty acids serve unexpected roles in regulating cellular fat storage by enforcing LD diversity.


2020 ◽  
Author(s):  
Cécile Ferré ◽  
Anne Thouard ◽  
Alexandre Bétourné ◽  
Pascale Belenguer ◽  
Marie-Christine Miquel ◽  
...  

Abstract Mortalin is a mitochondrial chaperone protein involved in quality control of proteins imported into the mitochondrial matrix, which was recently described as a sensor of neuronal stress. Mortalin is down-regulated in neurons of patients with neurodegenerative diseases and levels of Mortalin expression are correlated with neuronal fate in animal models of Alzheimer's disease or cerebral ischemia. To date, however, the links between Mortalin levels, its impact on mitochondrial function and morphology and, ultimately, the initiation of neurodegeneration, are still unclear. In the present study, we used lentiviral vectors to over- or under-express Mortalin in primary neuronal cultures. We first analyzed the early events of neurodegeneration in the axonal compartment, using oriented neuronal cultures grown in microfluidic-based devices. We observed that Mortalin down-regulation induced mitochondrial fragmentation and axonal damage, whereas its over-expression conferred protection against axonal degeneration mediated by oxidative stress. We next demonstrated that Mortalin levels modulated mitochondrial morphology by a direct action on DRP1 phosphorylation, thereby further illustrating the crucial implication of mitochondrial dynamics on neuronal fate in degenerative diseases.


1977 ◽  
Vol 23 (9) ◽  
pp. 1145-1150 ◽  
Author(s):  
Robert A. Altenbern

Cells of Staphylococcus aureus, strain S-6, can grow in the presence of 100 μg of cerulenin/ml if the basal medium is supplemented with certain saturated or unsaturated fatty acids. The production of enterotoxin B (SEB) is markedly influenced by both the ratio of saturated to unsaturated fatty acid and by the melting point of the unsaturated fatty acid supplement. The results presented suggest that a certain degree of membrane fluidity promotes maximum SEB production and that greater or lesser degrees of membrane fluidity prohibit substantial SEB formation but fail to affect final growth density.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S730-S730
Author(s):  
Karl Rodriguez

Abstract The accrual of aggregation-prone cytotoxic proteins underlies neural pathologies seen in aging, Alzheimer’s disease and other dementias. Recent evidence indicates that heat shock protein 25kDa (HSP25) interacts with tau. To demonstrate a causal role for HSP25 in these pathologies, we overexpressed HSP25 protein in worms. This manipulation led to an increase in life span. Moreover, the longevity-effect was associated with increased expression of genes downstream of the SKN-1/Nrf2 stress-response transcription factor. HSP25 over-expression also reduces aggregate pathology and extends lifespan in a C. elegans neuronal-specific, aggregate-prone tau model . We propose that over-expression of HSP25 could provide protection from protein aggregation induced neurodegeneration. However, it is not yet clear whether this HSP25 effect could be efficaciously provided exogenously by other cell types. Thus, we will test whether increased peripheral HSP25 will reduce protein aggregation and stimulate a global Skn-1 stress-response pathway, reduce toxicity in neurons, and improve health outcomes.


2011 ◽  
Vol 437 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Ida C. Elle ◽  
Karina T. Simonsen ◽  
Louise C. B. Olsen ◽  
Pernille K. Birck ◽  
Sidse Ehmsen ◽  
...  

ACBP (acyl-CoA-binding protein) is a small primarily cytosolic protein that binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, indicating that it performs a basal cellular function. However, differential tissue expression and the existence of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs: four basal forms and three ACBP domain proteins. We find that each of these paralogues is capable of complementing the growth of ACBP-deficient yeast cells, and that they exhibit distinct temporal and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however, we find that functional loss of ACBP-1 leads to reduced triacylglycerol (triglyceride) levels and aberrant lipid droplet morphology and number in the intestine. We also show that worms lacking ACBP-2 show a severe decrease in the β-oxidation of unsaturated fatty acids. A quadruple mutant, lacking all basal ACBPs, is slightly developmentally delayed, displays abnormal intestinal lipid storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans.


PLoS Genetics ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. e1006801 ◽  
Author(s):  
Wenjing Qi ◽  
Yijian Yan ◽  
Dietmar Pfeifer ◽  
Erika Donner v. Gromoff ◽  
Yimin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document