lipid desaturation
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 7)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 10 ◽  
Author(s):  
Xian-Yang Qin ◽  
Luc Gailhouste

Upregulated MYCN gene expression is restricted to specialized cell populations such as EpCAM+ cancer stem cells in liver cancer, regardless of DNA amplification and mutation. Here, we reviewed the role of MYCN gene expression in liver homeostasis, regeneration, and tumorigenesis, and discussed the potential non-genomic mechanisms involved in controlling MYCN gene expression in liver cancer, with a focus on inflammation-mediated signal transduction and microRNA-associated post-transcriptional regulation. We concluded that dynamic MYCN gene expression is an integrated consequence of multiple signals in the tumor microenvironment, including tumor growth-promoting signals, lipid desaturation-mediated endoplasmic reticulum stress adaptation signals, and tumor suppressive miRNAs, making it a potential predictive biomarker of tumor stemness and plasticity. Therefore, understanding and tracing the dynamic changes and functions of MYCN gene expression will shed light on the origin of liver tumorigenesis at the cellular level and the development of novel therapeutic and diagnostic strategies for liver cancer treatment.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 106
Author(s):  
Yeongji Yu ◽  
Hyejin Kim ◽  
SeokGyeong Choi ◽  
JinSuh Yu ◽  
Joo Yeon Lee ◽  
...  

The elimination of the cancer stem cell (CSC) population may be required to achieve better outcomes of cancer therapy. We evaluated stearoyl-CoA desaturase 1 (SCD1) as a novel target for CSC-selective elimination in colon cancer. CSCs expressed more SCD1 than bulk cultured cells (BCCs), and blocking SCD1 expression or function revealed an essential role for SCD1 in the survival of CSCs, but not BCCs. The CSC potential selectively decreased after treatment with the SCD1 inhibitor in vitro and in vivo. The CSC-selective suppression was mediated through the induction of apoptosis. The mechanism leading to selective CSC death was investigated by performing a quantitative RT-PCR analysis of 14 CSC-specific signaling and marker genes after 24 and 48 h of treatment with two concentrations of an inhibitor. The decrease in the expression of Notch1 and AXIN2 preceded changes in the expression of all other genes, at 24 h of treatment in a dose-dependent manner, followed by the downregulation of most Wnt- and NOTCH-signaling genes. Collectively, we showed that not only Wnt but also NOTCH signaling is a primary target of suppression by SCD1 inhibition in CSCs, suggesting the possibility of targeting SCD1 against colon cancer in clinical settings.


2020 ◽  
Author(s):  
Reuben S.E. Young ◽  
Andrew P. Bowman ◽  
Elizabeth D. Williams ◽  
Kaylyn D. Tousignant ◽  
Charles L. Bidgood ◽  
...  

AbstractFatty acid (FA) modifications, such as enzymatic desaturation and elongation, have long been thought to involve sequential and highly specific enzyme-substrate interactions, which result in canonical products that are well-defined in their chain lengths, degree of unsaturation and double bond positions.1 These products act as a supply of building blocks for the synthesis of complex lipids supporting a symphony of lipid signals and membrane macrostructure. Recently, it was brought to light that differences in substrate availability due to enzyme inhibition can activate alternative pathways in a range of cancers, potentially altering the total species repertoire of FA metabolism.2,3 We have used isomer-resolved lipidomics to analyse human prostate tumours and cancer cell lines and reveal, for the first-time, the full extent of metabolic plasticity in cancer. Assigning the double bond position(s) in simple and complex lipids allows mapping of fatty acid desaturation and elongation via hitherto apocryphal metabolic pathways that generate FAs with unusual sites of unsaturation. Downstream utilisation of these FAs is demonstrated by their incorporation into complex structural lipids. The unsaturation profiles of different phospholipids reveal substantive structural variation between classes that will, necessarily, modulate lipid-centred biological processes in cancer cells including membrane fluidity3-5 and signal transduction.6-8


2019 ◽  
Author(s):  
L Chauve ◽  
S Murdoch ◽  
F. Masoudzadeh ◽  
F. Hodge ◽  
A. Lopez-Clavijo ◽  
...  

SummaryAn organisms’ ability to adapt to heat can be key to its survival. Cells adapt to temperature shifts by adjusting lipid desaturation levels and the fluidity of membranes in a process that is thought to be controlled cell autonomously. We have discovered that subtle, step-wise increments in ambient temperature can lead to the conserved heat shock response being activated in head neurons of C. elegans. This response is exactly opposite to the expression of the lipid desaturase FAT-7 in the worm’s gut. We find that the over-expression of the master regulator of this response, Hsf-1, in head neurons, causes extensive fat remodeling to occur across tissues. These changes include a decrease in FAT-7 expression and a shift in the levels of unsaturated fatty acids in the plasma membrane. These shifts are in line with membrane fluidity requirements to survive in warmer temperatures. We have identified that the cGMP receptor, TAX-2/TAX-4, as well as TGF-β/BMP signaling, as key players in the transmission of neuronal stress to peripheral tissues. This is the first study to suggest that a thermostat-based mechanism can centrally coordinate membrane fluidity in response to warm temperatures across tissues in multicellular animals.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
M. Djanaguiraman ◽  
D. L. Boyle ◽  
R. Welti ◽  
S. V. K. Jagadish ◽  
P. V. V. Prasad

2018 ◽  
Vol 314 (2) ◽  
pp. E152-E164 ◽  
Author(s):  
Bryan C. Bergman ◽  
Leigh Perreault ◽  
Allison Strauss ◽  
Samantha Bacon ◽  
Anna Kerege ◽  
...  

Intramuscular triglyceride (IMTG) concentration is elevated in insulin-resistant individuals and was once thought to promote insulin resistance. However, endurance-trained athletes have equivalent concentration of IMTG compared with individuals with type 2 diabetes, and have very low risk of diabetes, termed the “athlete’s paradox.” We now know that IMTG synthesis is positively related to insulin sensitivity, but the exact mechanisms for this are unclear. To understand the relationship between IMTG synthesis and insulin sensitivity, we measured IMTG synthesis in obese control subjects, endurance-trained athletes, and individuals with type 2 diabetes during rest, exercise, and recovery. IMTG synthesis rates were positively related to insulin sensitivity, cytosolic accumulation of DAG, and decreased accumulation of C18:0 ceramide and glucosylceramide. Greater rates of IMTG synthesis in athletes were not explained by alterations in FFA concentration, DGAT1 mRNA expression, or protein content. IMTG synthesis during exercise in Ob and T2D indicate utilization as a fuel despite unchanged content, whereas IMTG concentration decreased during exercise in athletes. mRNA expression for genes involved in lipid desaturation and IMTG synthesis were increased after exercise and recovery. Further, in a subset of individuals, exercise decreased cytosolic and membrane di-saturated DAG content, which may help explain insulin sensitization after acute exercise. These data suggest IMTG synthesis rates may influence insulin sensitivity by altering intracellular lipid localization, and decreasing specific ceramide species that promote insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document