scholarly journals Non-destructive enzymatic deamination enables single molecule long read sequencing for the determination of 5-methylcytosine and 5-hydroxymethylcytosine at single base resolution

Author(s):  
Zhiyi Sun ◽  
Romualdas Vaisvila ◽  
Bo Yan ◽  
Chloe Baum ◽  
Lana Saleh ◽  
...  

AbstractThe predominant methodology for DNA methylation analysis relies on the chemical deamination by sodium bisulfite of unmodified cytosine to uracil to permit the differential readout of methylated cytosines. Bisulfite treatment damages the DNA leading to fragmentation and loss of long-range methylation information. To overcome this limitation of bisulfite treated DNA we applied a new enzymatic deamination approach, termed EM-seq (Enzymatic Methyl-seq) to long-range sequencing technologies. Our methodology, named LR-EM-seq (Long Range Enzymatic Methyl-seq) preserves the integrity of DNA allowing long-range methylation profiling of 5-mC and 5-hmC over several kilobases of genomic DNA. When applied to known differentially methylated regions (DMR), LR-EM-seq achieves phasing of over 5 kb resulting in broader and better defined DMRs compared to previously reported. This result demonstrated the importance of phasing methylation for biologically relevant questions and the applicability of LR-EM-seq for long range epigenetic analysis at single molecule and single nucleotide resolution.

2019 ◽  
Author(s):  
Maika Malig ◽  
Stella R. Hartono ◽  
Jenna M. Giafaglione ◽  
Lionel A. Sanz ◽  
Frederic Chedin

ABSTRACTR-loops are a prevalent class of non-B DNA structures that form during transcription upon reannealing of the nascent RNA to the template DNA strand. R-loops have been profiled using the S9.6 antibody to immunoprecipitate DNA:RNA hybrids. S9.6-based DNA:RNA immunoprecipitation (DRIP) techniques revealed that R-loops form dynamically over conserved genic hotspots. We developed an orthogonal profiling methodology that queries R-loops via the presence of long stretches of single-stranded DNA on the looped-out strand. Non-denaturing sodium bisulfite treatment catalyzes the conversion of unpaired cytosines to uracils, creating permanent genetic tags for the position of an R-loop. Long read, single-molecule PacBio sequencing allows the identification of R-loop ‘footprints’ at near nucleotide resolution in a strand-specific manner on single DNA molecules and at ultra-deep coverage. Single-molecule R-loop footprinting (SMRF-seq) revealed a strong agreement between S9.6-and bisulfite-based R-loop mapping and confirmed that R-loops form from unspliced transcripts over genic hotspots. Using the largest single-molecule R-loop dataset to date, we show that individual R-loops generate overlapping sets of molecular clusters that pile-up through larger R-loop-prone zones. SMRF-seq further established that R-loop distribution patterns are driven by both intrinsic DNA sequence features and DNA topological constraints, revealing the principles of R-loop formation.


Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 481 ◽  
Author(s):  
Chen ◽  
Lin ◽  
Xie ◽  
Zhong ◽  
Zhang ◽  
...  

The damage caused by Bradysia odoriphaga is the main factor threatening the production of vegetables in the Liliaceae family. However, few genetic studies of B. odoriphaga have been conducted because of a lack of genomic resources. Many long-read sequencing technologies have been developed in the last decade; therefore, in this study, the transcriptome including all development stages of B. odoriphaga was sequenced for the first time by Pacific single-molecule long-read sequencing. Here, 39,129 isoforms were generated, and 35,645 were found to have annotation results when checked against sequences available in different databases. Overall, 18,473 isoforms were distributed in 25 various Clusters of Orthologous Groups, and 11,880 isoforms were categorized into 60 functional groups that belonged to the three main Gene Ontology classifications. Moreover, 30,610 isoforms were assigned into 44 functional categories belonging to six main Kyoto Encyclopedia of Genes and Genomes functional categories. Coding DNA sequence (CDS) prediction showed that 36,419 out of 39,129 isoforms were predicted to have CDS, and 4319 simple sequence repeats were detected in total. Finally, 266 insecticide resistance and metabolism-related isoforms were identified as candidate genes for further investigation of insecticide resistance and metabolism in B. odoriphaga.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Abstract Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from high-quality reads (short or long-reads) to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.


2021 ◽  
Author(s):  
Zhe Weng ◽  
Fengying Ruan ◽  
Weitian Chen ◽  
Zhe Xie ◽  
Yeming Xie ◽  
...  

The epigenetic modifications of histones are essential marks related to the development and disease pathogenesis, including human cancers. Mapping histone modification has emerged as the widely used tool for studying epigenetic regulation. However, existing approaches limited by fragmentation and short-read sequencing cannot provide information about the long-range chromatin states and represent the average chromatin status in samples. We leveraged the advantage of long read sequencing to develop a method "BIND&MODIFY" for profiling the histone modification of individual DNA fiber. Our approach is based on the recombinant fused protein A-EcoGII, which tethers the methyltransferase EcoGII to the protein binding sites and locally labels the neighboring DNA regions through artificial methylations. We demonstrate that the aggregated BIND&MODIFY signal matches the bulk-level ChIP-seq and CUT&TAG, observe the single-molecule heterogenous histone modification status, and quantify the correlation between distal elements. This method could be an essential tool in the future third-generation sequencing ages.


2017 ◽  
Author(s):  
Mircea Cretu Stancu ◽  
Markus J. van Roosmalen ◽  
Ivo Renkens ◽  
Marleen Nieboer ◽  
Sjors Middelkamp ◽  
...  

AbstractStructural genomic variants form a common type of genetic alteration underlying human genetic disease and phenotypic variation. Despite major improvements in genome sequencing technology and data analysis, the detection of structural variants still poses challenges, particularly when variants are of high complexity. Emerging long-read single-molecule sequencing technologies provide new opportunities for detection of structural variants. Here, we demonstrate sequencing of the genomes of two patients with congenital abnormalities using the ONT MinION at 11x and 16x mean coverage, respectively. We developed a bioinformatic pipeline - NanoSV - to efficiently map genomic structural variants (SVs) from the long-read data. We demonstrate that the nanopore data are superior to corresponding short-read data with regard to detection of de novo rearrangements originating from complex chromothripsis events in the patients. Additionally, genome-wide surveillance of SVs, revealed 3,253 (33%) novel variants that were missed in short-read data of the same sample, the majority of which are duplications < 200bp in size. Long sequencing reads enabled efficient phasing of genetic variations, allowing the construction of genome-wide maps of phased SVs and SNVs. We employed read-based phasing to show that all de novo chromothripsis breakpoints occurred on paternal chromosomes and we resolved the long-range structure of the chromothripsis. This work demonstrates the value of long-read sequencing for screening whole genomes of patients for complex structural variants.


2019 ◽  
Vol 47 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Yann Fichou ◽  
Isabelle Berlivet ◽  
Gaëlle Richard ◽  
Christophe Tournamille ◽  
Lilian Castilho ◽  
...  

Background: In the novel era of blood group genomics, (re-)defining reference gene/allele sequences of blood group genes has become an important goal to achieve, both for diagnostic and research purposes. As novel potent sequencing technologies are available, we thought to investigate the variability encountered in the three most common alleles of ACKR1, the gene encoding the clinically relevant Duffy antigens, at the haplotype level by a long-read sequencing approach. Materials and Methods: After long-range PCR amplification spanning the whole ACKR1 gene locus (∼2.5 kilobases), amplicons generated from 81 samples with known genotypes were sequenced in a single read by using the Pacific Biosciences (PacBio) single molecule, real-time (SMRT) sequencing technology. Results: High-quality sequencing reads were obtained for the 162 alleles (accuracy >0.999). Twenty-two nucleotide variations reported in databases were identified, defining 19 haplotypes: four, eight, and seven haplotypes in 46 ACKR1*01, 63 ACKR1*02, and 53 ACKR1*02N.01 alleles, respectively. Discussion: Overall, we have defined a subset of reference alleles by third-generation (long-read) sequencing. This technology, which provides a “longitudinal” overview of the loci of interest (several thousand base pairs) and is complementary to the second-generation (short-read) next-generation sequencing technology, is of critical interest for resolving novel, rare, and null alleles.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 227 ◽  
Author(s):  
Scott Gigante

Oxford Nanopore Technologies' (ONT's) MinION and PromethION long-read sequencing technologies are emerging as genuine alternatives to established Next-Generation Sequencing technologies. A combination of the highly redundant file format and a rapid increase in data generation have created a significant problem both for immediate data storage on MinION-capable laptops, and for long-term storage on lab data servers. We developed Picopore, a software suite offering three methods of compression. Picopore's lossless and deep lossless methods provide a 25% and 44% average reduction in size, respectively, without removing any data from the files. Picopore's raw method provides an 88% average reduction in size, while retaining biologically relevant data for the end-user. All methods have the capacity to run in real-time in parallel to a sequencing run, reducing demand for both immediate and long-term storage space.


2019 ◽  
Vol 21 (6) ◽  
pp. 1971-1986 ◽  
Author(s):  
Matteo Chiara ◽  
Federico Zambelli ◽  
Ernesto Picardi ◽  
David S Horner ◽  
Graziano Pesole

Abstract A number of studies have reported the successful application of single-molecule sequencing technologies to the determination of the size and sequence of pathological expanded microsatellite repeats over the last 5 years. However, different custom bioinformatics pipelines were employed in each study, preventing meaningful comparisons and somewhat limiting the reproducibility of the results. In this review, we provide a brief summary of state-of-the-art methods for the characterization of expanded repeats alleles, along with a detailed comparison of bioinformatics tools for the determination of repeat length and sequence, using both real and simulated data. Our reanalysis of publicly available human genome sequencing data suggests a modest, but statistically significant, increase of the error rate of single-molecule sequencing technologies at genomic regions containing short tandem repeats. However, we observe that all the methods herein tested, irrespective of the strategy used for the analysis of the data (either based on the alignment or assembly of the reads), show high levels of sensitivity in both the detection of expanded tandem repeats and the estimation of the expansion size, suggesting that approaches based on single-molecule sequencing technologies are highly effective for the detection and quantification of tandem repeat expansions and contractions.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Shang-Qian Xie ◽  
Yue Han ◽  
Xiao-Zhou Chen ◽  
Tai-Yu Cao ◽  
Kai-Kai Ji ◽  
...  

The accurate landscape of transcript isoforms plays an important role in the understanding of gene function and gene regulation. However, building complete transcripts is very challenging for short reads generated using next-generation sequencing. Fortunately, isoform sequencing (Iso-Seq) using single-molecule sequencing technologies, such as PacBio SMRT, provides long reads spanning entire transcript isoforms which do not require assembly. Therefore, we have developed ISOdb, a comprehensive resource database for hosting and carrying out an in-depth analysis of Iso-Seq datasets and visualising the full-length transcript isoforms. The current version of ISOdb has collected 93 publicly available Iso-Seq samples from eight species and presents the samples in two levels: (1) sample level, including metainformation, long read distribution, isoform numbers, and alternative splicing (AS) events of each sample; (2) gene level, including the total isoforms, novel isoform number, novel AS number, and isoform visualisation of each gene. In addition, ISOdb provides a user interface in the website for uploading sample information to facilitate the collection and analysis of researchers’ datasets. Currently, ISOdb is the first repository that offers comprehensive resources and convenient public access for hosting, analysing, and visualising Iso-Seq data, which is freely available.


2020 ◽  
Author(s):  
Parker Knight ◽  
Marie-Pierre L. Gauthier ◽  
Carolina E. Pardo ◽  
Russell P. Darst ◽  
Alberto Riva ◽  
...  

AbstractDifferential DNA methylation and chromatin accessibility are associated with disease development, particularly cancer. Methods that allow profiling of these epigenetic mechanisms in the same reaction and at the single-molecule or single-cell level continue to emerge. However, a challenge lies in jointly visualizing and analyzing the heterogeneous nature of the data and extracting regulatory insight. Here, we developed methylscaper, a visualization framework for simultaneous analysis of DNA methylation and chromatin landscapes. Methylscaper implements a weighted principle component analysis that orders sequencing reads, each providing a record of the chromatin state of one epiallele, and reveals patterns of nucleosome positioning, transcription factor occupancy, and DNA methylation. We demonstrate methylscaper’s utility on a long-read, single-molecule methyltransferase accessibility protocol for individual templates (MAPit) dataset and a single-cell nucleosome, methylation, and transcription sequencing (scNMT-seq) dataset. In comparison to other procedures, methylscaper is able to readily identify chromatin features that are biologically relevant to transcriptional status while scaling to larger datasets.Availability and implementationMethylscaper, is available on GitHub at https://github.com/rhondabacher/[email protected]


Sign in / Sign up

Export Citation Format

Share Document