scholarly journals Oxygen consumption of drift-feeding rainbow trout: the energetic tradeoff between locomotion and feeding in flow

2019 ◽  
Author(s):  
J.L. Johansen ◽  
O. Akanyeti ◽  
J.C. Liao

AbstractTo forage in fast, turbulent flow environments where prey are abundant, predatory fishes must deal with the high associated costs of locomotion. Prevailing theory suggests that many species exploit hydrodynamic refuges to minimize the cost of locomotion while foraging. Here we challenge this theory based on direct oxygen consumption measurements of drift-feeding trout (Oncorhynchus mykiss) foraging in the freestream and from behind a flow refuge at velocities up to 100 cm s-1. We demonstrate that refuging is not energetically beneficial when foraging in fast flows due to a high attack cost and low prey capture success associated with leaving a station-holding refuge to intercept prey. By integrating optimum foraging theory with empirical data from respirometry and video imaging, we develop a mathematical model to predict when drift-feeding fishes should exploit or avoid refuges based on prey density, size and flow velocity. Our foraging and refuging model provides new mechanistic insights into the locomotor costs, habitat use, and prey selection of fishes foraging in current-swept habitats.

1982 ◽  
Vol 97 (1) ◽  
pp. 359-373 ◽  
Author(s):  
G. G. Duthie

(1) The standard oxygen consumption and the oxygen consumption during measured swimming activity have been determined in three flatfish species at 5, 10 and 15 degrees C. (2) The relationship between weight and standard oxygen consumption for flatfish conform to the general relationship Y = aWb. On an interspecies basis, standard oxygen consumption of flatfish is significantly lower than that of roundfish. (3) A semilogarithmic model describes the relationship between oxygen consumption and swimming speed for the three species. Values for maximum oxygen consumption, metabolic scopes and critical swimming speeds are low in comparison to salmonids. (4) The optimum swimming speeds and critical swimming speeds of flatfish are similar. It is suggested that, over long distances, flatfish adopt a strategy of swimming at supercritical speeds with periods of intermittent rest to repay the accrued oxygen debt. (5) Elevated lactic acid levels in flounder white muscle after moderate swimming indicate an additional 15% anaerobic contribution to the cost of locomotion as calculated from aerobic considerations.


1990 ◽  
Vol 149 (1) ◽  
pp. 307-317 ◽  
Author(s):  
R. J. Full ◽  
A. Tullis

Small animals use more metabolic energy per unit mass than large animals to run on a level surface. If the cost to lift one gram of mass one vertical meter is constant, small animals should require proportionally smaller increases in metabolic cost to run uphill. To test this hypothesis on very small animals possessing an exceptional capacity for ascending steep gradients, we measured the metabolic cost of locomotion in the cockroach, Periplaneta americana, running at angles of 0, 45 and 90 degrees to the horizontal. Resting oxygen consumption (VO2rest) was not affected by incline angle. Steady-state oxygen consumption (VO2ss) increased linearly with speed at all angles of ascent. The minimum cost of locomotion (the slope of the VO2ss versus speed function) increased with increasing angle of ascent. The minimum cost of locomotion on 45 and 90 degrees inclines was two and three times greater, respectively, than the cost during horizontal running. The cockroach's metabolic cost of ascent greatly exceeds that predicted from the hypothesis of a constant efficiency for vertical work. Variations in stride frequency and contact time cannot account for the high metabolic cost, because they were independent of incline angle. An increase in the metabolic cost or amount of force production may best explain the increase in metabolic cost. Small animals, such as P. americana, can easily scale vertical surfaces, but the energetic cost is considerable.


1990 ◽  
Vol 150 (1) ◽  
pp. 233-246 ◽  
Author(s):  
R. J. Full ◽  
D. A. Zuccarello ◽  
A. Tullis

The mass-specific minimum cost of terrestrial locomotion (Cmin) decreases with an increase in body mass. This generalization spans nearly eight orders of magnitude in body mass and includes two phyla. The general relationship between metabolic cost and mass is striking. However, a significant amount of unexplained interspecific variation in Cmin exists at any given body mass. To determine how variation in morphology and physiology affects metabolic energy cost, we measured the oxygen consumption of three comparably sized insects running on a miniature treadmill; the American cockroach Periplaneta americana, the caterpillar hunting beetle Calosoma affine and the Australian field cricket Teleogryllus commodus. Steady-state oxygen consumption (VO2ss) increased linearly with speed. Cmin was similar for crickets and cockroaches (8.0 and 8.5 ml O2 g-1km-1, respectively), but was substantially lower for beetles (4.6 ml O2 g-1km-1). The predicted value of Cmin for all three insects was within the 95% confidence intervals of the Cmin versus body mass function. However, the 95% confidence intervals extend approximately 2.5-fold above and 40% below the regression line, making the variation at any given body mass nearly sixfold. Normalizing for the rate of muscle force production by determining the metabolic cost per stride failed to account for the interspecific variation in the cost of locomotion observed in the three insects. Ground contact costs (i.e. VO2ss multiplied by leg contact time during a stride) in insects were similar to those measured in mammals (1.5-3.1 J kg-1) and were independent of speed, but did not explain the interspecific variation in the cost of locomotion. Muscles of the caterpillar hunting beetle may have a greater mechanical advantage than muscles of the Australian field cricket and American cockroach. Variation in musculo-skeletal arrangement, apart from variation in body mass, could translate into significant differences in the minimum cost of terrestrial locomotion.


1981 ◽  
Vol 93 (1) ◽  
pp. 317-325 ◽  
Author(s):  
J. H. Brackenbury ◽  
P. Avery ◽  
M. Gleeson

1. Oxygen consumption, respiratory frequency, and the PO2 of expiratory and interclavicular air sac gases were continuously monitored in six female domestic fowl trained to exercise on a treadmill for 10 min periods at normal or elevated air temperatures. 2. At normal temperatures (20 +/− 2 degrees C) the cost of locomotion rose from 0.46 ml O2 kg-1 m-1 at 0-3 km h-1 to 0.77 ml O2 kg-1 m-1 at the maximum speed of 4.3 km h-1. At 32 +/− 2 degrees C, Vo2 increased by as much as 20% compared to normal temperatures. 3. Hyperventilation occurred at all speeds and at both normal and elevated temperatures. End-tidal and interclavicular PO2 increased, in a parallel manner with speed, the latter remaining consistently 6-7 Torr less than the former both at rest and during exercise.


1985 ◽  
Vol 116 (1) ◽  
pp. 363-373 ◽  
Author(s):  
M. J. Myers ◽  
K. Steudel

Functional morphologists have traditionally regarded cost of locomotion as an important influence on the design of locomotor structures. If cost of locomotion is an important constraint in the natural selection of these structures, it should be possible to show that animals differing in limb morphology also differ in their locomotor costs. In previous experiments on three species of cursorial mammals differing considerably in limb structure, no such differences were detected. Since the factors that determine the rate of energy consumption of a running animal are not well understood, we felt that the effect of limb morphology on cost could best be examined in a system in which only the inertial properties of limbs were varied while other factors remained constant. Consequently, we have measured changes in the rate of energy consumption of running human subjects produced by artificial alterations in limb inertial properties. Other variables that might influence cost have been controlled. We found that the cost of adding a given mass to the limbs is significantly greater than adding it to the centre of mass and that this effect becomes more pronounced as the limb loads are moved distally. Thus a clear effect of limb mass and its distribution on cost of locomotion has been demonstrated.


2008 ◽  
Vol 37 (1) ◽  
Author(s):  
Tomasz Kakareko ◽  
Paweł Napiórkowski ◽  
Jacek Kozłowski

Diet composition and prey selection of vendaceLake Ostrowite is a mesotrophic lake in Northern Poland 280.7 ha in area and 43 m deep at its deepest point. To study vendace (


2020 ◽  
pp. 73-75
Author(s):  
B.M. Bazrov ◽  
T.M. Gaynutdinov

The selection of technological bases is considered before the choice of the type of billet and the development of the route of the technological process. A technique is proposed for selecting the minimum number of sets of technological bases according to the criterion of equality in the cost price of manufacturing the part according to the principle of unity and combination of bases at this stage. Keywords: part, surface, coordinating size, accuracy, design and technological base, labor input, cost price. [email protected]


2021 ◽  
Vol 13 (10) ◽  
pp. 5599
Author(s):  
Eko Supriyanto ◽  
Jayan Sentanuhady ◽  
Ariyana Dwiputra ◽  
Ari Permana ◽  
Muhammad Akhsin Muflikhun

Biodiesel has caught the attention of many researchers because it has great potential to be a sustainable fossil fuel substitute. Biodiesel has a non-toxic and renewable nature and has been proven to emit less environmentally harmful emissions such as hydrocarbons (HC), and carbon monoxide (CO) as smoke particles during combustion. Problems related to global warming caused by greenhouse gas (GHG) emissions could also be solved by utilizing biodiesel as a daily energy source. However, the expensive cost of biodiesel production, mainly because of the cost of natural feedstock, hinders the potential of biodiesel commercialization. The selection of natural sources of biodiesel should be made with observations from economic, agricultural, and technical perspectives to obtain one feasible biodiesel with superior characteristics. This review paper presents a detailed overview of various natural sources, their physicochemical properties, the performance, emission, and combustion characteristics of biodiesel when used in a diesel engine. The recent progress in studies about natural feedstocks and manufacturing methods used in biodiesel production were evaluated in detail. Finally, the findings of the present work reveal that transesterification is currently the most superior and commonly used biodiesel production method compared to other methods available.


Sign in / Sign up

Export Citation Format

Share Document