scholarly journals Generation of Monophasic Action Potentials and Intermediate Forms

2020 ◽  
Author(s):  
Shahriar Iravanian ◽  
Ilija Uzelac ◽  
Conner Herndon ◽  
Jonathan J Langberg ◽  
Flavio H Fenton

ABSTRACTThe Monophasic Action Potential (MAP) is a near replica of the transmembrane potential recorded when an electrode is pushed firmly against cardiac tissue. Despite its many practical uses, the mechanism of MAP signal generation and the reason it is so different from unipolar recordings is not completely known and is a matter of controversy. It is hypothesized that partial depolarization of the cells directly underneath the electrode contributes to the generation of MAP signals. In this paper, we describe a parametric, semi-quantitative method to generate realistic MAP and intermediate forms – multiphasic electrograms different from an ideal MAP – that does not require the partial depolarization hypothesis. The key ideas of our method are the formation of junctional spaces, i.e., electrically isolated pockets between the surface of an electrode and tissue, and the presence of a complex network of passive components that acts as a high-pass filter to distort the signal that reaches the recording amplifier. The passive network is formed by the interaction between the passive tissue properties and the double-layer capacitance of electrodes. We show that it is possible to generate different electrograms by the change of the model parameters and that both the MAP and intermediate forms reside on a continuum of signals. Our model helps to decipher the mechanisms of signal generation and can lead to a better design for electrodes, recording amplifiers, and experimental setups.SIGNIFICANCERecording the Monophasic Action Potential (MAP) is potentially very useful in both experimental and clinical cardiac electrophysiology and can provide valuable information about the repolarization phase of the action potential. However, despite its benefits, it currently has only a small and niche role. The main challenge is the technical difficulties of recording an ideal MAP. Our results provide a better understanding of the mechanisms of the generation of cardiac electrograms and may help to optimize experiments and improve tools to achieve the full potentials of recording the MAP signals.

2004 ◽  
Vol 286 (4) ◽  
pp. H1370-H1381 ◽  
Author(s):  
Joseph V. Tranquillo ◽  
Michael R. Franz ◽  
Björn C. Knollmann ◽  
Alexandra P. Henriquez ◽  
Doris A. Taylor ◽  
...  

The extracellular potential at the site of a mechanical deformation has been shown to resemble the underlying transmembrane action potential, providing a minimally invasive way to access membrane dynamics. The biophysical factors underlying the genesis of this signal, however, are still poorly understood. With the use of data from a recent experimental study in a murine heart, a three-dimensional anisotropic bidomain model of the mouse ventricular free wall was developed to study the currents and potentials resulting from the application of a point mechanical load on cardiac tissue. The applied pressure is assumed to open nonspecific pressure-sensitive channels depolarizing the membrane, leading to monophasic currents at the electrode edge that give rise to the monophasic action potential (MAP). The results show that the magnitude and the time course of the MAP are reproduced only for certain combinations of local or global intracellular and interstitial resistances that form a resting tissue length constant that, if applied over the entire domain, is smaller than that required to match the wave speed. The results suggest that the application of pressure not only causes local depolarization but also changes local tissue properties, both of which appear to play a critical role in the genesis of the MAP.


2002 ◽  
Vol 282 (3) ◽  
pp. H855-H861 ◽  
Author(s):  
Xiaohong Zhou ◽  
Jian Huang ◽  
Raymond E. Ideker

To investigate the possibility of transmural recording of repolarization through the ventricular wall, KCl monophasic action potential (MAP) electrodes positioned along plunge needles were developed and tested. The MAP electrode consists of a silver wire surrounded by agarose gel containing KCl, which slowly eluted into the adjacent tissue to depolarize it. In six dogs, a plunge needle containing three KCl MAP electrodes was inserted into the left ventricle to simultaneously record from the subepicardium, midwall, and subendocardium. In six pigs, eight plunge needles containing three KCl MAP electrodes and two plunge needles containing similar electrodes except for the absence of KCl were inserted into the ventricles. In three guinea pig papillary muscles, a KCl electrode was used to record MAPs along with two microelectrodes for recording transmembrane potentials. Transmural MAP recordings could be made for >1 h in dogs and >2 h in pigs with a significant decrease in MAP amplitude over time but without a significant change in MAP duration. With the electrodes without KCl in pigs, the injury potentials subsided in <30 min. When the pacing rate was changed to alter the action potential duration and refractory period in dogs, the MAP duration correlated with the local effective refractory period ( r = 0.94). The time course of the MAP duration recorded with a KCl MAP electrode in guinea pig papillary muscles corresponded well with that of the transmembrane potential recorded with an adjacent microelectrode. It is possible to record transmural repolarization of the ventricles with KCl MAP electrodes on plunge needles. The MAP is caused by the KCl rather than being a nonspecific injury potential.


2010 ◽  
pp. 645-650
Author(s):  
S-G Yang ◽  
O Kittnar

Monophasic action potential (MAP) recording plays an important role in a more direct view of human myocardial electrophysiology under both physiological and pathological conditions. The procedure of MAP measuring can be simply performed using the Seldinger technique, when MAP catheter is inserted through femoral vein into the right ventricle or through femoral artery to the left ventricle. The MAP method represents a very useful tool for electrophysiological research in cardiology. Its crucial importance is based upon the fact that it enables the study of the action potential (AP) of myocardial cell in vivo and, therefore, the study of the dynamic relation of this potential with all the organism variables. This can be particularly helpful in the case of arrhythmias. There are no doubts that physiological MAP recording accuracy is almost the same as transmembrane AP as was recently confirmed by anisotropic bidomain model of the cardiac tissue. MAP recording devices provide precise information not only on the local activation time but also on the entire local repolarization time course. Although the MAP does not reflect the absolute amplitude or upstroke velocity of transmembrane APs, it delivers highly accurate information on AP duration and configuration, including early afterdepolarizations as well as relative changes in transmembrane diastolic and systolic potential changes. Based on available data, the MAP probably reflects the transmembrane voltage of cells within a few millimeters of the exploring electrode. Thus MAP recordings offer the opportunity to study a variety of electrophysiological phenomena in the in situ heart (including effects of cycle length changes and antiarrhythmic drugs on AP duration).


2018 ◽  
Vol 243 (8) ◽  
pp. 708-714
Author(s):  
Hong Cao ◽  
Xin Wang ◽  
Shaozheng Ying ◽  
Congxin Huang

AMP-activated protein kinase-α2 is the main catalytic subunit of the heart, which is mainly located in cardiac myocytes. The effect of AMP-activated protein kinase-α2 on the cardiac electrophysiology is barely studied. From the previous study, it is possible that AMP-activated protein kinase-α2 may have some effect on the electrophysiology of the heart. To prove the hypothesis, we used the AMP-activated protein kinase-α2 knockout (AMPKα2−/−) mice to estimate the electrophysiological characteristics of AMPKα2−/− mice and try to find the mechanism between them. We used AMP-activated protein kinase-α2 gene knockout (AMPKα2−/−) mice and control wild-type mice as the experimental animals. In the experiment, we measured the monophasic action potential duration and test the inducibility to ventricular arrhythmia in isolated mice heart with and without β-adrenoceptor antagonist metoprolol. Meanwhile, plasma concentration of catecholamine was collected. We found that AMPKα2−/− significantly shortened 90% repolarization of monophasic action potential (MAP) (MAPD90) than wild-type (47.4 ± 2.6 ms vs. 55.5 ± 2.4 ms, n = 10, P < 0.05) and were more vulnerable to be induced to ventricular arrhythmias (70% (7/10) vs. 10% (1/10), P < 0.05), accompanied by the higher concentration of catecholamine (epinephrine: 1.75 ± 0.18 nmol/L vs. 0.68 ± 0.10 nmol/L n = 10, P < 0.05; norepinephrine: 9.56 ± 0.71 nmol/L vs. 2.52 ± 0.31 nmol/L n = 10, P < 0.05). The shortening of MAPD90 and increased inducibility to ventricular arrhythmias of AMPKα2−/− could almost be abolished when perfusion with β-adrenoceptor antagonist metoprolol. It indicated that the β-adrenoceptor activation resulting from catecholamine release was mainly responsible for the relating changes of electrophysiology of AMPKα2−/−. It had great clinical significance, as in patients who had problem with AMP-activated protein kinase-α2 gene, we might use β-adrenoceptor antagonists as the prevention of arrhythmias in future. Impact statement As far as we know, this is the first time the role of AMP-activated protein kinase-α2 (AMPKα2) on the cardiac electrophysiology is explored, and we found that the β-adrenoceptor activation resulting from catecholamine release was mainly responsible for the changes of electrophysiology related to the absence of AMPKα2. This has great clinical significance, as in patients who have problems with AMPKα2 gene, we may use β-adrenoceptor antagonists for the prevention of arrhythmias in future.


Author(s):  
Gary Tse ◽  
Sheung Ting Wong ◽  
Vivian Tse ◽  
Jie Ming Yeo

AbstractThe aim of this article is to provide an overview of current debate on the monophasic action potential (MAP) recording technique, specifically whether the depolarizing or the reference electrode is responsible for recording the MAP waveform. A literature search was made using key words including monophasic action potential, MAP, electrophysiological basis, recording electrode, depolarizing electrode, contact electrode, indifferent electrode, and reference electrode. References from articles were screened for additional relevant papers. Articles published by the different experimental groups claim that depolarizing electrode, but not reference electrode, records MAPs from the myocardium. This can be more accurately described when considering biophysical theory, which states that MAP is a bipolar signal with contributions from not only the depolarizing electrode but also remote activation at the reference electrode. It is not meaningful to claim that one is the recording electrode because potential differences must be measured between two points in space. Nevertheless, the MAP technique is useful for assessing the local electrical activity of the myocardium in contact with the depolarizing electrode. It is important to have the recording electrode in close proximity with the reference electrode to minimize contamination from far-field signals.


2013 ◽  
pp. S49-S56
Author(s):  
O. KITTNAR ◽  
S.-G. YANG ◽  
M. MLČEK

Spontaneous depolarization similar to that from the sinus node was documented from the myocardial sleeves of pulmonary veins (PV) after isolation procedures. It was then hypothesized that sinus node-like tissue is present in the PVs of humans. Based on a number of features, the myocardium of myocardial sleeves (MS) is highly arrhythmogenic. Membrane potentials originating from MS are invariably recordable at the PVs ostia in patients with atrial fibrillation (AF) and delayed conduction around the PVs ostia may play a role in re-entry process responsible for the initiation and maintenance of AF. Diagnostic and therapeutic evidence of premature atrial beats induced in MS of PVs and resulting in launch of AF was detected by 3D electroanatomic method of monophasic action potential (MAP). MAP recording plays an important role in a direct view of human myocardial electrophysiology under both physiological and pathological conditions. Its crucial importance lies in the fact that it enables the study of the action potential of myocardial cell in vivo and, therefore, the study of the dynamic relation of this potential with all the organism variables. The knowledge of pathological MAPs from PV myocardial sleeves can help us to confirm a diagnosis when finding the similar action potential morphology. MAP can be also used to evaluate the therapeutic efficiency of vagal nerves suppression, radiofrequency ablation or other treatment procedures in PVs myocardial sleeves as well as for post-treatment following up.


Sign in / Sign up

Export Citation Format

Share Document