scholarly journals Characterizing expression of candidate genes of a glutamate receptor pathway in Arabidopsis thaliana using real-time RT-PCR

2020 ◽  
Author(s):  
Julie Wurdeman ◽  
Tessa Durham Brooks

AbstractThe Arabidopsis thaliana genome contains twenty genes that are analogous to mammalian ionotropic glutamate receptors. There are sixteen mammalian glutamate receptors, which are best known for their roles in neuroplasticity, learning, and memory. The large number of glutamate receptors in A. thaliana suggests they play important roles in the plant’s growth and development, possibly serving to regulate function like they do in non-excitable mammalian tissues. A specific glutamate receptor, GLR3.3, is highly expressed in root tissue of plants, and has been found to promote stronger, more coordinated curvature development during the process of gravitropism. Gravitropism is the ability of a plant to change its orientation to that of the gravity vector when displaced from its gravitational set point angle (GSPA). A previous association study identified six candidate genes which were correlated with the same phenotypic characteristics of gravitropism as GLR3.3. Utilizing real time RT-PCR (qRT-PCR) expression profiles were created for each candidate gene, including GLR3.3. A qRT-PCR method was developed to provide a more quantitative and sensitive way for measuring gene expression than traditional PCR methods. Furthermore, MIQE (Minimum Information for Publication of Quantitative Real-Time PCR Experiments) guidelines were followed to ensure data robustness. Expression profiles that were similar to GLR3.3 were hypothesized to be good candidates as cell signaling components of this novel pathway. This is the beginning of a process that will identify a GLR-dependent pathway, the role of this novel pathway in the gravitropic response, and the influence of GLRs in plant physiology.

2005 ◽  
Vol 38 (1) ◽  
pp. 50-57 ◽  
Author(s):  
Christos Kroupis ◽  
Aliki Stathopoulou ◽  
Eleni Zygalaki ◽  
Lisa Ferekidou ◽  
Maroulio Talieri ◽  
...  
Keyword(s):  
Rt Pcr ◽  
Qrt Pcr ◽  

BioTechniques ◽  
2005 ◽  
Vol 38 (2) ◽  
pp. 287-293 ◽  
Author(s):  
Van Luu-The ◽  
Nathalie Paquet ◽  
Ezequiel Calvo ◽  
Jean Cumps

2017 ◽  
Vol 248 ◽  
pp. 217-225 ◽  
Author(s):  
Frank Schurr ◽  
Nicolas Cougoule ◽  
Marie-Pierre Rivière ◽  
Magali Ribière-Chabert ◽  
Hamid Achour ◽  
...  

2006 ◽  
Vol 133 (1) ◽  
pp. 14-19 ◽  
Author(s):  
Enrique Royuela ◽  
Ana Negredo ◽  
Alicia Sánchez-Fauquier

Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 680 ◽  
Author(s):  
He ◽  
Liang ◽  
Lu ◽  
Wang ◽  
Liu ◽  
...  

Gibberellin (GAs) plays the important role in the regulation of grape developmental and growth processes. The bioinformatics analysis confirmed the differential expression of GA2, GA3, and GA20 gibberellin oxidase genes (VvGA2oxs, VvGA3oxs, and VvGA20oxs) in the grape genome, and laid a theoretical basis for exploring its role in grape. Based on the Arabidopsis GA2oxs, GA3oxs, and GA20oxs genes already reported, the VvGA2oxs, VvGA3oxs, and VvGA20oxs genes in the grape genome were identified using the BLAST software in the grape genome database. Bioinformatics analysis was performed using software such as DNAMAN v.5.0, Clustalx, MapGene2Chrom, MEME, GSDS v.2.0, ExPASy, DNAsp v.5.0, and MEGA v.7.0. Chip expression profiles were generated using grape Affymetrix GeneChip 16K and Grape eFP Browser gene chip data in PLEXdb. The expression of VvGA2oxs, VvGA3oxs, and VvGA20oxs gene families in stress was examined by qRT-PCR (Quantitative real-time-PCR). There are 24 GAoxs genes identified with the grape genome that can be classified into seven subgroups based on a phylogenetic tree, gene structures, and conserved Motifs in our research. The gene family has higher codon preference, while selectivity is negative selection of codon bias and selective stress was analyzed. The expression profiles indicated that the most of VvGAox genes were highly expressed under different time lengths of ABA (Abscisic Acid) treatment, NaCl, PEG and 5 °C. Tissue expression analysis showed that the expression levels of VvGA2oxs and VvGA20oxs in different tissues at different developmental stages of grapes were relatively higher than that of VvGA3oxs. Last but not least, qRT-PCR (Real-time fluorescent quantitative PCR) was used to determine the relative expression of the GAoxs gene family under the treatment of GA3 (gibberellin 3) and uniconazole, which can find that some VvGA2oxs was upregulated under GA3 treatment. Simultaneously, some VvGA3oxs and VvGA20oxs were upregulated under uniconazole treatment. In a nutshell, the GA2ox gene mainly functions to inactivate biologically active GAs, while GA20ox mainly degrades C20 gibberellins, and GA3ox is mainly composed of biologically active GAs. The comprehensive analysis of the three classes of VvGAoxs would provide a basis for understanding the evolution and function of the VvGAox gene family in a grape plant.


2021 ◽  
Author(s):  
Mohammad Jahidur Rahman Khan ◽  
Md. Shahadat Hossain ◽  
Samshad Jahan Shumu ◽  
Md. Selim Reza ◽  
Farzana Mim ◽  
...  

Abstract Background: While the COVID-19 pandemic is a worldwide crisis, tests with high sensitivity and specificity are essential for identifying and managing COVID-19 patients. Globally, several rapid antigen tests RATs for COVID-19 have been developed, but their clinical efficacy has not been well established. This study aimed to evaluate the performance of several rapid antigen tests (RATs) to diagnose SARS-CoV-2 infection.Methods: This prospective observational study was conducted at Shaheed Suhrawardy Medical College hospital from February 2021 to April 2021 in Dhaka, Bangladesh. This study included the patients admitted in this hospital at the COVID-19 isolation unit or referred from the triage facility of the outdoor department of this hospital suspected as COVID-19 case. Two nasopharyngeal samples were collected simultaneously. one sample was used on the spot for the RAT. The other was sent to the adjacent Shaheed Suhrawardy Medical College COVID-19 RT-PCR laboratory for real-time reverse transcription-polymerase chain reaction (qRT-PCR). The performance of the RAT was evaluated using the results of qRT-PCR as a reference.Results: A total of 223 patients were included in this study, and the real-time RT-PCR detected SARS-CoV-2 in 84 (37.7%) patients. Of these 84 patients, 9 (10.7%) were asymptomatic. The overall sensitivity and specificity of RATs were 78.6% and 99.3%, respectively. The sensitivity was 81.3% in symptomatic cases and 55.6% in asymptomatic cases. False-negatives were observed in 18 patients, 3 of whom were asymptomatic and had a low viral load (cycle threshold (Ct) > 30). The detection rate of RATs was 100% when the Ct value was up to 24. The detection rate was 42.3% when the Ct was >29. The detection rate of RATs was 92.3% when the onset of symptoms was within three days. The detection rate was 33.3% when the onset of symptoms was >7 days.Conclusions: RATs for COVID-19 used in this study delivered an acceptable performance in patients with high viral load and within the first week of the onset of symptoms. They can be used as a supplementary method to RT-PCR for the diagnosis of COVID-19 patients.


2006 ◽  
Vol 5 (14) ◽  
pp. 788
Author(s):  
G. Barbero ◽  
P. Destefanis ◽  
S. Procida ◽  
C. Fiori ◽  
C. Ceruti ◽  
...  

2008 ◽  
Vol 20 (9) ◽  
pp. 90
Author(s):  
L. Fu ◽  
J. E. Girling ◽  
P. A. W. Rogers

Previous studies examining gene expression profiles in normal endometrium and endometriotic lesions have used RNA extracted from whole tissue samples. Results from these studies can be difficult to interpret as they reflect expression averaged across several different cell types that may be functionally quite different. The aim of this study was to establish laser capture microdissection (LCM) as a technique to examine gene expression in stromal and epithelial cells from normal and ectopic endometrium. We hypothesised that genes associated with inflammation would be elevated in cells from endometriotic lesions. Full thickness uterine samples were collected during abdominal hysterectomy from normal cycling premenopausal women. Endometriotic lesions were collected during abdominal laparoscopy. Samples were either frozen in OCT or stored in RNAlater for 12 h before freezing. Tissues were immunostained with an antibody against CD10 to identify ectopic endometrial stromal cells before LCM. Endometrial epithelial and stromal cells were collected using the PALM MicroLaser System. RNA quality was accessed using Experion. TGFβ1, MMP1, αSMA, SMAD2 and NFκB mRNA was analysed using real-time RT–PCR. Of the endometriotic samples stored in OCT (n = 58), only 14% (n = 8) had visible endometrial glands. Of these, only 37% (n = 3) had RNA of an acceptable quality for further analysis. However, RNA quality and quantity were dramatically improved in 3 of 5 samples collected in RNAlater. In preliminary studies, expression of TGFβ1 and αSMA mRNA was elevated in endometriotic lesions in comparison to the normal endometrium, whereas NFκB expression did not change. We have shown that RNAlater solution is useful to preserve RNA quality for small clinical endometriotic samples and that immuno-guided LCM-generated homogenous cell populations coupled with real-time RT–PCR can provide valuable insights into cell and disease-specific gene expression in endometriotic lesions.


2017 ◽  
Vol 16 (9) ◽  
pp. 2055-2061 ◽  
Author(s):  
Xiu-rong WANG ◽  
Lin-lin GU ◽  
Jian-zhong SHI ◽  
Hai-feng XU ◽  
Ying ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document