scholarly journals Genome-Wide Identification and Expression Analysis of GA2ox, GA3ox, and GA20ox Are Related to Gibberellin Oxidase Genes in Grape (Vitis Vinifera L.)

Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 680 ◽  
Author(s):  
He ◽  
Liang ◽  
Lu ◽  
Wang ◽  
Liu ◽  
...  

Gibberellin (GAs) plays the important role in the regulation of grape developmental and growth processes. The bioinformatics analysis confirmed the differential expression of GA2, GA3, and GA20 gibberellin oxidase genes (VvGA2oxs, VvGA3oxs, and VvGA20oxs) in the grape genome, and laid a theoretical basis for exploring its role in grape. Based on the Arabidopsis GA2oxs, GA3oxs, and GA20oxs genes already reported, the VvGA2oxs, VvGA3oxs, and VvGA20oxs genes in the grape genome were identified using the BLAST software in the grape genome database. Bioinformatics analysis was performed using software such as DNAMAN v.5.0, Clustalx, MapGene2Chrom, MEME, GSDS v.2.0, ExPASy, DNAsp v.5.0, and MEGA v.7.0. Chip expression profiles were generated using grape Affymetrix GeneChip 16K and Grape eFP Browser gene chip data in PLEXdb. The expression of VvGA2oxs, VvGA3oxs, and VvGA20oxs gene families in stress was examined by qRT-PCR (Quantitative real-time-PCR). There are 24 GAoxs genes identified with the grape genome that can be classified into seven subgroups based on a phylogenetic tree, gene structures, and conserved Motifs in our research. The gene family has higher codon preference, while selectivity is negative selection of codon bias and selective stress was analyzed. The expression profiles indicated that the most of VvGAox genes were highly expressed under different time lengths of ABA (Abscisic Acid) treatment, NaCl, PEG and 5 °C. Tissue expression analysis showed that the expression levels of VvGA2oxs and VvGA20oxs in different tissues at different developmental stages of grapes were relatively higher than that of VvGA3oxs. Last but not least, qRT-PCR (Real-time fluorescent quantitative PCR) was used to determine the relative expression of the GAoxs gene family under the treatment of GA3 (gibberellin 3) and uniconazole, which can find that some VvGA2oxs was upregulated under GA3 treatment. Simultaneously, some VvGA3oxs and VvGA20oxs were upregulated under uniconazole treatment. In a nutshell, the GA2ox gene mainly functions to inactivate biologically active GAs, while GA20ox mainly degrades C20 gibberellins, and GA3ox is mainly composed of biologically active GAs. The comprehensive analysis of the three classes of VvGAoxs would provide a basis for understanding the evolution and function of the VvGAox gene family in a grape plant.

2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is a popular cultivated fruit crop with high economic value in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


Epigenomics ◽  
2021 ◽  
Author(s):  
Congxia Bai ◽  
Tingting Liu ◽  
Yingying Sun ◽  
Hao Li ◽  
Ning Xiao ◽  
...  

Aim: To investigate the expression profiles of circRNAs after intracerebral hemorrhage (ICH). Materials & methods: RNA sequencing and qRT-PCR were used to investigate and validate circRNA expression levels. Bioinformatics analysis was performed to explore potential functions of the circRNAs. Results: Expression levels of 15 circRNAs were consistently altered in patients with ICH compared with their expression levels in hypertension. Three circRNAs, hsa_circ_0001240, hsa_circ_0001947 and hsa_circ_0001386, individually or combined, were confirmed as promising biomarkers for predicting and diagnosing ICH. The circRNAs were involved mainly in lysine degradation and the immune system. Conclusion: This is the first study to report expression profiles of circRNAs after ICH and to propose that three circRNAs are potential biomarkers for ICH.


PLoS ONE ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. e0226668 ◽  
Author(s):  
Xu Su ◽  
Liuyang Lu ◽  
Yashe Li ◽  
Congai Zhen ◽  
Guilei Hu ◽  
...  

2009 ◽  
Vol 110 (3-4) ◽  
pp. 245-255 ◽  
Author(s):  
Luciana M. Melo ◽  
Antônia S.F. Nascimento ◽  
Felipe G. Silveira ◽  
Rodrigo M.S. Cunha ◽  
Nathália A.C. Tavares ◽  
...  

2021 ◽  
Author(s):  
xiaolin zhu ◽  
baoqiang wang ◽  
xian wang ◽  
xiaohong wei

Abstract Based on the whole genome data information of quinoa, the CqSRS gene family members were systematically identified and analyzed by bioinformatics methods, and the responses of CqSRS genes to NaCl (200 mmol/L), SA (200 umol/L) and low temperature (4℃) were detected by qRT-PCR. The results showed that a total of 10 SRS genes were identified in quinoa, and they were distributed on 9 chromosomes, and there were 4 pairs of duplicated genes. The number of amino acids encoded ranged from 143 to 370, and the isoelectric point ranged from 4.81 to 8.90. The secondary structure was mainly composed of random coil(Cc). Most of the CqSRS genes were located in the cytoplasm (5 CqSRS). Phylogenetic analysis showed that the CqSRS gene was divided into three evolutionary groups, and the gene structure showed that the number of exons of CqSRS was between 2–5. Promoter analysis revealed that there are a total of 44 elements related to plant hormone response elements, light response elements, stress response elements and tissue-specific expression in the upstream of the gene. Protein interaction showed that all 10 CqSRS proteins appeared in the known protein interaction network diagram in Arabidopsis. Expression profile analysis showed that CqSRS genes had different expression patterns, and some genes had tissue-specific expression. qRT-PCR showed that all SRS family genes responded to SA, NaCl and low-temperature treatments, but the expression levels of different CqSRS genes were significantly different under various stresses. This study lays a foundation for further analyzed the function of CqSRS family genes.


2021 ◽  
Author(s):  
Michihito Deguchi ◽  
Shobha Potlakayala ◽  
Zachary Spuhler ◽  
Hannah George ◽  
Vijay Sheri ◽  
...  

Abstract Industrial hemp (Cannabis sativa L.) is a dioecious crop widely known for its production of phytocannabinoids, flavonoids, and terpenes. In the past two years since its legalization, there has been significant interest in researching this important crop for pharmaceutical applications. Although many scientific reports have demonstrated gene expression analysis of hemp through OMICs approaches, accurate validation of omics data cannot be performed because of lack of reliable reference genes for normalization of qRT-PCR data. The differential gene expression patterns of 13 candidate reference genes under osmotic, heavy metal, hormonal, and UV stress were evaluated through four software packages: geNorm, NormFinder, BestKeeper, and RefFinder. The EF-1a ranked as the most stable reference gene across all stresses, TUB was the most stable under osmotic stress, and TATA was the most stable under both heavy metal and hormonal stress. The expression profiles of two cannabinoid pathway genes, AAE1 and THCAS, using the two most stable and single least stable reference genes confirmed that two most stables genes were apt for normalization of gene expression data. This work will contribute to the future studies on the expression analysis of hemp genes regulating the synthesis, transport and accumulation of secondary metabolites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kai Jia ◽  
Cunyao Yan ◽  
Jing Zhang ◽  
Yunxia Cheng ◽  
Wenwen Li ◽  
...  

AbstractJAZ is a plant-specific protein family involved in the regulation of plant development, abiotic stresses, and responses to phytohormone treatments. In this study, we carried out a bioinformatics analysis of JAZ genes in turnip by determining the phylogenetic relationship, chromosomal location, gene structure and expression profiles analysis under stresses. The 36 JAZ genes were identified and classified into four subfamilies (ZML, JAZ, PPD and TIFY). The JAZ genes were located on 10 chromosomes. Two gene pairs were involved in tandem duplication events. We identified 44 collinear JAZ gene pairs in the turnip genome. Analysis of the Ka/Ks ratios indicated that the paralogs of the BrrJAZ family principally underwent purifying selection. Expression analysis suggested JAZ genes may be involved in the formation of turnip tuberous root, and they also participated in the response to ABA, SA, MeJA, salt stress and low-temperature stress. The results of this study provided valuable information for further exploration of the JAZ gene family in turnip.


2021 ◽  
Author(s):  
Young-Mi Lee ◽  
Soyeon In ◽  
Se-Joo Kim ◽  
Eun-Ji Won ◽  
Hayoung Cho ◽  
...  

Abstract Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), a primary approach for evaluating gene expression, requires an appropriate normalization strategy to rule out variations in gene expression among samples. The best option is to use a reference gene whose expression level is stable across various experimental conditions to compare the mRNA levels of a target gene. However, there is limited information on how the reference gene is differentially expressed at different ages (growth) in small invertebrates with notable changes such as molting. In this study, expression profiles of nine candidate reference genes from the brackish water flea, Diaphanosoma celebensis, were evaluated under diverse exposure to toxicants and according to growth. As a result, four different algorithms showed similar stabilities of genes for chemical exposures in the case of limited conditions using the same developmental stage (e.g., adult), while the results according to age showed a significantly different pattern in suite of candidate reference genes. This affected the results of genes EcRA and GST, which are involved in development and detoxification mechanisms, respectively. Our finding is the first step towards establishing a standardized real-time qRT-PCR analysis of this environmentally important invertebrate that has potential for aquatic ecotoxicology, particularly in estuarine environments.


2020 ◽  
Vol 10 (4) ◽  
pp. 677-696
Author(s):  
Zhi-Gang Dong ◽  
Hui Liu ◽  
Xiao-Long Wang ◽  
Jun Tang ◽  
Kai-Kai Zhu ◽  
...  

BACKGROUND: Grapevine was one of the most important perennial fruit crops worldwide. Acyl-CoA-binding proteins (ACBPs) in eudicots and monocots show conservation in an acyl-CoA-binding domain (ACB domain) which binds acyl-CoA esters. OBJECTIVE: The information and data provided in the present study contributes to understand the evolutionary processes and potential functions of this gene family in grapevine growth and development, and responses to abiotic stress. METHODS: Using the complete grapevine genome sequences, we investigated the number grapevine ACBP genes, the exon-intron structure, phylogenetic relationships and synteny with the Arabidopsis ACBP gene family. Furthermore, the expression profiles of VvACBP genes based on public microarray data in different tissues, and the expression patterns responding to different exogenous hormones as well as abiotic and biotic stresses were presented. The qRT-PCR was used to verify the microarray data under drought stress treatments. Finally, the leaf relative water content (RWC), leaf chlorophyll content, and enzymatic activities were measured to further examine the tolerance to drought stress in grapevine. RESULTS: The six grapevine ACBPs were identified. Their distribution into various groups differed from Arabidopsis and rice. Synteny analysis demonstrated that several VvACBP genes were found in corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of the respective lineages. Sequence alignment and structural annotation provided an overview of variations that might contribute to functional divergence from Arabidopsis ACBPs. Expressional analyses suggested that both conserved and variant biological functions exist in ACBPs across different species. The expression pattern of these genes were similar in the microarray and qRT-PCR analyses. Gene structure organization and expression characteristics of VvACBPs resembled those of their Arabidopsis orthologous, although species-specific differences also exist. Differential regulation of genes suggested functional diversification among isoforms. The biochemical and physiological data showed the tolerance to drought stress of grapevine. CONCLUSIONS: These findings provided insight into evolution of ACBP gene family in plants and a solid foundation for a deeper understanding of the complex molecular responses of grapevine to stress.


Sign in / Sign up

Export Citation Format

Share Document