scholarly journals The ECF sigma factor PvdS regulates the type I-F CRISPR-Cas system in Pseudomonas aeruginosa

Author(s):  
Stephen Dela Ahator ◽  
Wang Jianhe ◽  
Lian-Hui Zhang

AbstractDuring infection, successful colonization of bacteria requires a fine-tuned supply of iron acquired via iron transport systems. However, the transport systems serve as phage attachment sites and entry portals for foreign nucleic acid. Most bacteria possess the CRISPR-Cas system, which targets and destroys foreign nucleic acids and prevents deleterious effects of horizontal gene transfer. To understand the regulation of the CRISPR-Cas system, we performed genome-wide random transposon mutagenesis which led to the identification of the Extracytoplasmic Function (ECF) Sigma factor, PvdS as a regulator of the Type I-F CRISPR-Cas system in P. aeruginosa. We show that under iron-depleted conditions PvdS induces the expression of the type I-F CRISPR-Cas system. This regulatory mechanism involves direct interaction of PvdS with specific binding sites in the promoter region of cas1. Furthermore, activation of the CRISPR-Cas system under iron-depleted conditions increases horizontal gene transfer (HGT) interference and adaptation. The PvdS activation of the CRISPR-Cas system under iron limitation highlights the versatility of the P. aeruginosa in multitasking its regulatory machinery to integrate multiple stress factors.ImportanceP. aeruginosa infects a wide range of host organisms and adapts to various environmental stress factors such as iron limitation due to its elaborate regulatory system. P aeruginosa possesses the type I-F CRISPR-Cas system as a defense mechanism against phages infection and HGT. This work highlights the ability of P. aeruginosa to multitask its iron regulatory system to control the CRISPR-Cas system under a physiologically relevant stress factor such as iron limitation where the bacteria are vulnerable to phage infection. It also adds to the knowledge of the regulation of the CRISPR-Cas system in bacteria and presents a possible target that could prevent the emergence of phage resistance via the CRISPR-Cas system during the development of phage therapy.

2018 ◽  
Author(s):  
Camilla M. Kao ◽  
Nitsara Karoonuthaisiri ◽  
David Weaver ◽  
Jonathan A. Vroom ◽  
Shuning A. Gai ◽  
...  

AbstractStreptomycetes constitute the largest genus of actinobacteria, living predominantly in soil and decaying vegetation. The bacteria are widely known for their filamentous morphologies and their capacity to synthesize antibiotics and other biologically active molecules. More than a decade ago, we and others identified 22 genomic islands thatStreptomyces coelicolorM145 possesses and otherStreptomycesstrains lack. One of these genomic islands, Genomic Island (GI) 6, encodes an extracytoplasmic function (ECF) sigma factor that we were characterizing in separate work. Here we report that artificial induction of the ECF sigma factor, which is encoded by SCO3450, causes the transcription of approximately one-fourth of GI 6, or ~26 mostly contiguous genes, to increase. More than half of the regulon encodes putative enzymes involved in small molecule metabolism. A putative haloacid dehalogenase is present. Genes encoding two putative anti-sigma factors flank SCO3450, the three genes residing within the regulon. Our data suggest that the ECF sigma factor and its regulon are a self-contained transcriptional unit that can be transferred by horizontal gene transfer. To our knowledge, only one other example has been identified of an ECF sigma factor and its contiguous regulon appearing to be transferrable by horizontal gene transfer [18,19]. Because the regulon appears not to be induced by the 44 growth conditions recently examined by Byung-Kwan Cho and colleagues [20], if it confers fitness toS. coelicolor, the regulon likely does so in as-yet unknown situations. Those situations might range from scavenging to detoxification to even communication within microbial communities.IMPORTANCEStreptomycesbacteria grow as hyphae that colonize soil and differentiate into spores when nutrients become scarce. In their terrestrial habitats, the bacteria encounter diverse conditions. Presumably so that the bacteria can cope with those conditions, the chromosomes of streptomycetes are highly dynamic, varying greatly in structure not only between species but also between closely related strains of a single species. The bacteria also have large numbers of extracytoplasmic function (ECF) sigma factors, which undoubtedly help the microorganisms respond to the plethora of challenges coming from the environment. This work illustrates these two threads ofStreptomycesbiology dovetailing: Genetic adaptability through horizontal gene transfer seems to have enabledStreptomyces coelicolorto acquire a self-contained transcriptional unit that consists of an ECF sigma factor and its regulon. The suggested facile movement of the regulon between microbial hosts indicates the value of the metabolism of small molecules possibly mediated by the regulon.


2021 ◽  
Vol 83 (1) ◽  
Author(s):  
David Schaller ◽  
Manuel Lafond ◽  
Peter F. Stadler ◽  
Nicolas Wieseke ◽  
Marc Hellmuth

AbstractSeveral implicit methods to infer horizontal gene transfer (HGT) focus on pairs of genes that have diverged only after the divergence of the two species in which the genes reside. This situation defines the edge set of a graph, the later-divergence-time (LDT) graph, whose vertices correspond to genes colored by their species. We investigate these graphs in the setting of relaxed scenarios, i.e., evolutionary scenarios that encompass all commonly used variants of duplication-transfer-loss scenarios in the literature. We characterize LDT graphs as a subclass of properly vertex-colored cographs, and provide a polynomial-time recognition algorithm as well as an algorithm to construct a relaxed scenario that explains a given LDT. An edge in an LDT graph implies that the two corresponding genes are separated by at least one HGT event. The converse is not true, however. We show that the complete xenology relation is described by an rs-Fitch graph, i.e., a complete multipartite graph satisfying constraints on the vertex coloring. This class of vertex-colored graphs is also recognizable in polynomial time. We finally address the question “how much information about all HGT events is contained in LDT graphs” with the help of simulations of evolutionary scenarios with a wide range of duplication, loss, and HGT events. In particular, we show that a simple greedy graph editing scheme can be used to efficiently detect HGT events that are implicitly contained in LDT graphs.


2017 ◽  
Author(s):  
Alexandra M Hernandez ◽  
Joseph F Ryan

Horizontal gene transfer has had major impacts on the biology of a wide range of organisms from antibiotic resistance in bacteria to adaptations to herbivory in arthropods. A growing body of literature shows that horizontal gene transfer (HGT) between non-animals and animals is more commonplace than previously thought. In this study, we present a thorough investigation of HGT in the ctenophore Mnemiopsis leidyi. We applied tests of phylogenetic incongruence to identify nine genes that were likely transferred horizontally early in ctenophore evolution from bacteria and non-metazoan eukaryotes. All but one of these HGTs (an uncharacterized protein) appear to perform enzymatic activities in M. leidyi, supporting previous observations that enzymes are more likely to be retained after HGT events. We found that the majority of these nine horizontally transferred genes were expressed during early development, suggesting that they are active and play a role in the biology of M. leidyi. This is the first report of HGT in ctenophores, and contributes to an ever-growing literature on the prevalence of genetic information flowing between non-animals and animals.


2009 ◽  
Vol 37 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Andrew T. Large ◽  
Martin D. Goldberg ◽  
Peter A. Lund

A survey of archaeal genomes for the presence of homologues of bacterial and eukaryotic chaperones reveals several interesting features. All archaea contain chaperonins, also known as Hsp60s (where Hsp is heat-shock protein). These are more similar to the type II chaperonins found in the eukaryotic cytosol than to the type I chaperonins found in bacteria, mitochondria and chloroplasts, although some archaea also contain type I chaperonin homologues, presumably acquired by horizontal gene transfer. Most archaea contain several genes for these proteins. Our studies on the type II chaperonins of the genetically tractable archaeon Haloferax volcanii have shown that only one of the three genes has to be present for the organisms to grow, but that there is some evidence for functional specialization between the different chaperonin proteins. All archaea also possess genes for prefoldin proteins and for small heat-shock proteins, but they generally lack genes for Hsp90 and Hsp100 homologues. Genes for Hsp70 (DnaK) and Hsp40 (DnaJ) homologues are only found in a subset of archaea. Thus chaperone-assisted protein folding in archaea is likely to display some unique features when compared with that in eukaryotes and bacteria, and there may be important differences in the process between euryarchaea and crenarchaea.


mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Kristin Hegstad ◽  
Haima Mylvaganam ◽  
Jessin Janice ◽  
Ellen Josefsen ◽  
Audun Sivertsen ◽  
...  

ABSTRACT Haemophilus influenzae colonizes the respiratory tract in humans and causes both invasive and noninvasive infections. Resistance to extended-spectrum cephalosporins in H. influenzae is rare in Europe. In this study, we defined acquired resistance gene loci and ftsI mutations in multidrug-resistant (MDR) and/or PBP3-mediated beta-lactam-resistant (rPBP3) H. influenzae strains, intending to understand the mode of spread of antibiotic resistance determinants in this species. Horizontal transfer of mobile genetic elements and transformation with resistance-conferring ftsI alleles were contributory. We found one small plasmid and three novel integrative conjugative elements (ICEs) which carry different combinations of resistance genes. Demonstration of transfer and/or ICE circular forms showed that the ICEs are functional. Two extensively MDR genetically unrelated H. influenzae strains (F and G) from the same geographical region shared an identical novel MDR ICE (Tn6686) harboring blaTEM-1, catA2-like, and tet(B). The first Nordic case of MDR H. influenzae septicemia, strain 0, originating from the same geographical area as these strains, had a similar resistance pattern but contained another ICE [Tn6687 with blaTEM-1, catP and tet(B)] with an overall structure quite similar to that of Tn6686. Comparison of the complete ftsI genes among rPBP3 strains revealed that the entire gene or certain regions of it are identical in genetically unrelated strains, indicating horizontal gene transfer. Our findings illustrate that H. influenzae is capable of acquiring resistance against a wide range of commonly used antibiotics through horizontal gene transfer, in terms of conjugative transfer of ICEs and transformation of chromosomal genes. IMPORTANCE Haemophilus influenzae colonizes the respiratory tract in humans and causes both invasive and noninvasive infections. As a threat to treatment, resistance against critically important antibiotics is on the rise in H. influenzae. Identifying mechanisms for horizontal acquisition of resistance genes is important to understand how multidrug resistance develops. The present study explores the antimicrobial resistance genes and their context in beta-lactam-resistant H. influenzae with coresistance to up to four non-beta-lactam groups. The results reveal that this organism is capable of acquiring resistance to a wide range of commonly used antibiotics through conjugative transfer of mobile genetic elements and transformation of chromosomal genes, resulting in mosaic genes with a broader resistance spectrum. Strains with chromosomally mediated resistance to extended-spectrum cephalosporins, co-trimoxazole, and quinolones combined with mobile genetic elements carrying genes mediating resistance to ampicillin, tetracyclines, and chloramphenicol have been reported, and further dissemination of such strains represents a particular concern.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marika Linsky ◽  
Yevgeniya Vitkin ◽  
Gil Segal

ABSTRACT The intracellular pathogen Legionella pneumophila utilizes the Icm/Dot type IV secretion system to translocate >300 effector proteins into host cells during infection. The regulation of some of these effector-encoding genes was previously shown to be coordinated by several global regulators, including three two-component systems (TCSs) found in all the Legionella species examined. Here, we describe the first Legionella genomic island encoding a single Icm/Dot effector and a dedicated TCS, which regulates its expression. This genomic island, which we named Lci, undergoes horizontal gene transfer in the Legionella genus, and the TCS encoded from this island (LciRS) is homologous to TCSs that control the expression of various metal resistance systems found in other bacteria. We found that the L. pneumophila sensor histidine kinase LciS is specifically activated by copper via a unique, small periplasmic sensing domain. Upon activation by LciS, the response regulator LciR directly binds to a conserved regulatory element and activates the expression of the adjacently located lciE effector-encoding gene. Thus, LciR represents the first local regulator of effectors identified in L. pneumophila. Moreover, we found that the expression of the lciRS operon is repressed by the Fis1 and Fis3 regulators, leading to Fis-mediated effects on copper induction of LciE and silencing of the expression of this genomic island in the absence of copper. This island represents a novel type of effector regulation in Legionella, shedding new light on the ways by which the Legionella pathogenesis system evolves its effector repertoire and expands its activating signals. IMPORTANCE Legionella pneumophila is an intracellular human pathogen that utilizes amoebae as its environmental host. The adaptation of L. pneumophila to the intracellular environment requires coordination of expression of its multicomponent pathogenesis system, which is composed of a secretion system and effector proteins. However, the regulatory factors controlling the expression of this pathogenesis system are only partially uncovered. Here, we discovered a novel regulatory system that is activated by copper and controls the expression of a single effector protein. The genes encoding both the regulatory system and the effector protein are located on a genomic island that undergoes horizontal gene transfer within the Legionella genus. This regulator-effector genomic island represents the first reported case of local regulation of effectors in Legionella. The discovery of this regulatory mechanism is an important step forward in the understanding of how the regulatory network of effectors functions and evolves in the Legionella genus.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 612
Author(s):  
Yani Arhab ◽  
Alexander G. Bulakhov ◽  
Tatyana V. Pestova ◽  
Christopher U.T. Hellen

Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5′-untranslated region (5′UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5′-end-independent initiation of translation by a different mechanism. Picornavirus 5′UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.


2009 ◽  
Vol 78 (3) ◽  
pp. 1147-1162 ◽  
Author(s):  
Jonathan M. Burgos ◽  
Natalie D. King-Lyons ◽  
Terry D. Connell

ABSTRACT Iron (Fe) in soluble elemental form is found in the tissues and fluids of animals at concentrations insufficient for sustaining growth of bacteria. Consequently, to promote colonization and persistence, pathogenic bacteria evolved a myriad of scavenging mechanisms to acquire Fe from the host. Bordetella bronchiseptica, the etiologic agent of upper respiratory infections in a wide range of mammalian hosts, expresses a number of proteins for acquisition of Fe. Using proteomic and genomic approaches, three Fe-regulated genes were identified in the bordetellae: bfrH, a gene encoding a putative siderophore receptor; ecfI, a gene encoding a putative extracellular function (ECF) sigma factor; and ecfR, a gene encoding a putative EcfI modulator. All three genes are highly conserved in B. pertussis, B. parapertussis, and B. avium. Genetic analysis revealed that transcription of bfrH was coregulated by ecfI, ecfR, and fur1, one of two fur homologues carried by B. bronchiseptica. Overexpression of ecfI decoupled bfrH from Fe-dependent regulation. In contrast, expression of bfrH was significantly reduced in an ecfI deletion mutant. Deletion of ecfR, however, was correlated with a significant increase in expression of bfrH, due in part to a cis-acting nucleotide sequence within ecfR which likely reduces the frequency of readthrough transcription of bfrH from the Fe-dependent ecfIR promoter. Using a murine competition infection model, bfrH was shown to be required for optimal virulence of B. bronchiseptica. These experiments revealed ecfIR-bfrH as a locus encoding a new member of the growing family of Fe and ECF sigma factor-modulated regulons in the bordetellae.


2010 ◽  
Vol 192 (8) ◽  
pp. 2255-2265 ◽  
Author(s):  
Bénédicte Bastiat ◽  
Laurent Sauviac ◽  
Claude Bruand

ABSTRACT RpoE2 is an extracytoplasmic function (ECF) sigma factor involved in the general stress response of Sinorhizobium meliloti, the nitrogen-fixing symbiont of the legume plant alfalfa. RpoE2 orthologues are widely found among alphaproteobacteria, where they play various roles in stress resistance and/or host colonization. In this paper, we report a genetic and biochemical investigation of the mechanisms of signal transduction leading to S. meliloti RpoE2 activation in response to stress. We showed that RpoE2 activity is negatively controlled by two paralogous anti-sigma factors, RsiA1 (SMc01505) and RsiA2 (SMc04884), and that RpoE2 activation by stress requires two redundant paralogous PhyR-type response regulators, RsiB1 (SMc01504) and RsiB2 (SMc00794). RsiB1 and RsiB2 do not act at the level of rpoE2 transcription but instead interact with the anti-sigma factors, and we therefore propose that they act as anti-anti-sigma factors to relieve RpoE2 inhibition in response to stress. This model closely resembles a recently proposed model of activation of RpoE2-like sigma factors in Methylobacterium extorquens and Bradyrhizobium japonicum, but the existence of two pairs of anti- and anti-anti-sigma factors in S. meliloti adds an unexpected level of complexity, which may allow the regulatory system to integrate multiple stimuli.


Sign in / Sign up

Export Citation Format

Share Document