scholarly journals Pathway-guided deep neural network toward interpretable and predictive modeling of drug sensitivity

2020 ◽  
Author(s):  
Lei Deng ◽  
Yideng Cai ◽  
Wenhao Zhang ◽  
Wenyi Yang ◽  
Bo Gao ◽  
...  

AbstractMotivationTo efficiently save cost and reduce risk in drug research and development, there is a pressing demand to develop in-silico methods to predict drug sensitivity to cancer cells. With the exponentially increasing number of multi-omics data derived from high-throughput techniques, machine learning-based methods have been applied to the prediction of drug sensitivities. However, these methods have drawbacks either in the interpretability of mechanism of drug action or limited performance in modeling drug sensitivity.ResultsIn this paper, we presented a pathway-guided deep neural network model, referred to as pathDNN, to predict the drug sensitivity to cancer cells. Biological pathways describe a group of molecules in a cell that collaborates to control various biological functions like cell proliferation and death, thereby abnormal function of pathways can result in disease. To make advantage of both the excellent predictive ability of deep neural network and the biological knowledge of pathways, we reshape the canonical DNN structure by incorporating a layer of pathway nodes and their connections to input gene nodes, which makes the DNN model more interpretable and predictive compared to canonical DNN. We have conducted extensive performance evaluations on multiple independent drug sensitivity data sets, and demonstrate that pathDNN significantly outperformed canonical DNN model and seven other classical regression models. Most importantly, we observed remarkable activity decreases of disease-related pathway nodes during forward propagation upon inputs of drug targets, which implicitly corresponds to the inhibition effect of disease-related pathways induced by drug treatment on cancer cells. Our empirical experiments show that pathDNN achieves pharmacological interpretability and predictive ability in modeling drug sensitivity to cancer cells.AvailabilityThe web server, as well as the processed data sets and source codes for reproducing our work, is available at http://pathdnn.denglab.org

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li-Hsin Cheng ◽  
Te-Cheng Hsu ◽  
Che Lin

AbstractBreast cancer is a heterogeneous disease. To guide proper treatment decisions for each patient, robust prognostic biomarkers, which allow reliable prognosis prediction, are necessary. Gene feature selection based on microarray data is an approach to discover potential biomarkers systematically. However, standard pure-statistical feature selection approaches often fail to incorporate prior biological knowledge and select genes that lack biological insights. Besides, due to the high dimensionality and low sample size properties of microarray data, selecting robust gene features is an intrinsically challenging problem. We hence combined systems biology feature selection with ensemble learning in this study, aiming to select genes with biological insights and robust prognostic predictive power. Moreover, to capture breast cancer's complex molecular processes, we adopted a multi-gene approach to predict the prognosis status using deep learning classifiers. We found that all ensemble approaches could improve feature selection robustness, wherein the hybrid ensemble approach led to the most robust result. Among all prognosis prediction models, the bimodal deep neural network (DNN) achieved the highest test performance, further verified by survival analysis. In summary, this study demonstrated the potential of combining ensemble learning and bimodal DNN in guiding precision medicine.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 949
Author(s):  
Jiangyi Wang ◽  
Min Liu ◽  
Xinwu Zeng ◽  
Xiaoqiang Hua

Convolutional neural networks have powerful performances in many visual tasks because of their hierarchical structures and powerful feature extraction capabilities. SPD (symmetric positive definition) matrix is paid attention to in visual classification, because it has excellent ability to learn proper statistical representation and distinguish samples with different information. In this paper, a deep neural network signal detection method based on spectral convolution features is proposed. In this method, local features extracted from convolutional neural network are used to construct the SPD matrix, and a deep learning algorithm for the SPD matrix is used to detect target signals. Feature maps extracted by two kinds of convolutional neural network models are applied in this study. Based on this method, signal detection has become a binary classification problem of signals in samples. In order to prove the availability and superiority of this method, simulated and semi-physical simulated data sets are used. The results show that, under low SCR (signal-to-clutter ratio), compared with the spectral signal detection method based on the deep neural network, this method can obtain a gain of 0.5–2 dB on simulated data sets and semi-physical simulated data sets.


2011 ◽  
Vol 52-54 ◽  
pp. 2105-2110 ◽  
Author(s):  
Ing Jiunn Su ◽  
Chia Chih Tsai ◽  
Wen Tsai Sung

Artificial neural networks (ANNs) are one of the most recently explored advanced technologies which show promise in the factory monitoring area. This paper focuses on two particular network models, back-propagation network (BPN) and general regression neural network (GRNN). The prediction accuracy of these two models is evaluated using a practical application situation in a monitor factory. GRNN emerged as a variant of the artificial neural network. Its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. According the simulation results we can show that GRNN is an effective way to considerably improve the predictive ability of BPN.


Author(s):  
Thorsten Wagner ◽  
Luca Lusnig ◽  
Sabrina Pospich ◽  
Markus Stabrin ◽  
Fabian Schönfeld ◽  
...  

AbstractStructure determination of filamentous molecular complexes involves the selection of filaments from cryo-EM micrographs. The automatic selection of helical specimens is particularly difficult and thus many challenging samples with issues such as contamination or aggregation are still manually picked. Here we present two approaches for selecting filamentous complexes: one uses a trained deep neural network to identify the filaments and is integrated in SPHIRE-crYOLO, the other one, called SPHIRE-STRIPER, is based on a classical line detection approach. The advantage of the crYOLO based procedure is that it accurately performs on very challenging data sets and selects filaments with high accuracy. Although STRIPER is less precise, the user benefits from less intervention, since in contrast to crYOLO, STRIPER does not require training. We evaluate the performance of both procedures on tobacco mosaic virus and filamentous F-actin data sets to demonstrate the robustness of each method.


2017 ◽  
Vol 1 (4) ◽  
pp. 271-277 ◽  
Author(s):  
Abdullah Caliskan ◽  
Mehmet Emin Yuksel

Abstract In this study, a deep neural network classifier is proposed for the classification of coronary artery disease medical data sets. The proposed classifier is tested on reference CAD data sets from the literature and also compared with popular representative classification methods regarding its classification performance. Experimental results show that the deep neural network classifier offers much better accuracy, sensitivity and specificity rates when compared with other methods. The proposed method presents itself as an easily accessible and cost-effective alternative to currently existing methods used for the diagnosis of CAD and it can be applied for easily checking whether a given subject under examination has at least one occluded coronary artery or not.


2021 ◽  
Vol 8 (4) ◽  
pp. 229-236
Author(s):  
Changkyum Kim ◽  
Insik Chun ◽  
Byungcheol Oh

An Artificial Intelligence(AI) study was conducted to calculate overtopping discharges for various coastal structures. The Deep Neural Network(DNN), one of the artificial intelligence methods, was employed in the study. The neural network was trained, validated and tested using the EurOtop database containing the experimental data collected from all over the world. To improve the accuracy of the deep neural network results, all data were non-dimensionalized and max-min normalized as a preprocessing process. L2 regularization was also introduced in the cost function to secure the convergence of iterative learning, and the cost function was optimized using RMSProp and Adam techniques. In order to compare the performance of DNN, additional calculations based on the multiple linear regression model and EurOtop’s overtopping formulas were done as well, using the data sets which were not included in the network training. The results showed that the predictive performance of the AI technique was relatively superior to the two other methods.


2021 ◽  
Author(s):  
Wenke Liu ◽  
Xuya Wang ◽  
D R Mani ◽  
David Fenyo

Cell line perturbation data could be utilized as a reference for inferring underlying molecular processes in new gene expression profiles. It is important to develop accurate and computationally efficient algorithms to exploit biological knowledge in the growing compendium of existing perturbation data and harness these for new predictions. We reframed the problem of inferring possible gene perturbation based on a reference perturbation database into a classification task and evaluated the application of deep neural network models to address this problem. Our results showed that a fully-connected multi-layer neural network was able to achieve up to 74.9% accuracy in a holdout test set, but the model generalizability was limited by consistency between training and testing data. Capacity and flexibility enables neural network models to efficiently represent transcriptomic features associated with single gene knockdown perturbations. With consistent signals between training and testing sets, neural networks may be trained to classify new samples to experimentally confirmed molecular phenotypes.


Sign in / Sign up

Export Citation Format

Share Document