scholarly journals An in vitro vesicle formation assay to analyze protein sorting in the secretory transport pathway

2020 ◽  
Author(s):  
Yan Huang ◽  
Haidi Yin ◽  
Xiao Tang ◽  
Qian Wu ◽  
Mo Wang ◽  
...  

AbstractThe fidelity of protein transport in the secretory transport pathway relies on the accurate sorting of proteins to their correct destination. To deepen our understanding of the underlying molecular mechanisms, it is important to develop a robust approach to systematically reveal cargo proteins that depend on a specific cargo sorting machinery to be efficiently packaged into vesicles. Here, we used an in vitro assay that reconstitutes packaging of human cargo proteins into vesicles to quantify cargo capture. Quantitative mass spectrometry analyses of the isolated vesicles revealed novel cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner or that interact with GTP-bound Sar1A on vesicle membranes. Functional analysis indicates that two of them, FAM84B and PRRC1, regulate anterograde trafficking. Comparing control cells with cells depleted of the cargo receptors, SURF4 or ERGIC53, we revealed specific clients of each of these two export adaptors. Moreover, our results indicate that vesicles enriched with a specific cargo protein contain specific transmembrane cargo and SNARE proteins. A SNARE protein, Vti1B, is identified to be in vesicles enriched with a planar cell polarity protein, Frizzled6, and promotes vesicular release of Frizzled6. Our results indicate that the vesicle formation assay in combination with quantitative mass spectrometric analysis is a robust and powerful tool to reveal novel cytosolic and transmembrane proteins that regulate trafficking of a specific cargo protein.

2021 ◽  
Vol 118 (35) ◽  
pp. e2101287118
Author(s):  
Yan Huang ◽  
Haidi Yin ◽  
Baiying Li ◽  
Qian Wu ◽  
Yang Liu ◽  
...  

The fidelity of protein transport in the secretory pathway relies on the accurate sorting of proteins to their correct destinations. To deepen our understanding of the underlying molecular mechanisms, it is important to develop a robust approach to systematically reveal cargo proteins that depend on specific sorting machinery to be enriched into transport vesicles. Here, we used an in vitro assay that reconstitutes packaging of human cargo proteins into vesicles to quantify cargo capture. Quantitative mass spectrometry (MS) analyses of the isolated vesicles revealed cytosolic proteins that are associated with vesicle membranes in a GTP-dependent manner. We found that two of them, FAM84B (also known as LRAT domain containing 2 or LRATD2) and PRRC1, contain proline-rich domains and regulate anterograde trafficking. Further analyses revealed that PRRC1 is recruited to endoplasmic reticulum (ER) exit sites, interacts with the inner COPII coat, and its absence increases membrane association of COPII. In addition, we uncovered cargo proteins that depend on GTP hydrolysis to be captured into vesicles. Comparing control cells with cells depleted of the cargo receptors, SURF4 or ERGIC53, we revealed specific clients of each of these two export adaptors. Our results indicate that the vesicle formation assay in combination with quantitative MS analysis is a robust and powerful tool to uncover novel factors that mediate vesicular trafficking and to uncover cargo clients of specific cellular factors.


2018 ◽  
Vol 18 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Aikebaier Maimaiti ◽  
Amier Aili ◽  
Hureshitanmu Kuerban ◽  
Xuejun Li

Aims: Gallic acid (GA) is generally distributed in a variety of plants and foods, and possesses cell growth-inhibiting activities in cancer cell lines. In the present study, the impact of GA on cell viability, apoptosis induction and possible molecular mechanisms in cultured A549 lung carcinoma cells was investigated. Methods: In vitro experiments showed that treating A549 cells with various concentrations of GA inhibited cell viability and induced apoptosis in a dose-dependent manner. In order to understand the mechanism by which GA inhibits cell viability, comparative proteomic analysis was applied. The changed proteins were identified by Western blot and siRNA methods. Results: Two-dimensional electrophoresis revealed changes that occurred to the cells when treated with or without GA. Four up-regulated protein spots were clearly identified as malate dehydrogenase (MDH), voltagedependent, anion-selective channel protein 1(VDAC1), calreticulin (CRT) and brain acid soluble protein 1(BASP1). VDAC1 in A549 cells was reconfirmed by western blot. Transfection with VDAC1 siRNA significantly increased cell viability after the treatment of GA. Further investigation showed that GA down regulated PI3K/Akt signaling pathways. These data strongly suggest that up-regulation of VDAC1 by GA may play an important role in GA-induced, inhibitory effects on A549 cell viability.


2018 ◽  
Author(s):  
Frank Adolf ◽  
Manuel Rhiel ◽  
Bernd Hessling ◽  
Andrea Hellwig ◽  
Felix T. Wieland

AbstractIntracellular transport and homeostasis of the endomembrane system in eukaryotic cells depend on formation and fusion of vesicular carriers. COPII vesicles export newly synthesized secretory proteins from the endoplasmic reticulum (ER). They are formed by sequential recruitment of the small GTP binding protein Sar1, the inner coat complex Sec23/24, and the outer coat complex Sec13/31. In order to investigate the roles of mammalian Sec24 isoforms in cargo sorting, we have combined in vitro COPII vesicle reconstitutions with SILAC-based mass spectrometric analysis. This approach enabled us to identify the core proteome of mammalian COPII vesicles. Comparison of the proteomes generated from vesicles with different Sec24 isoforms confirms several established isoform-dependent cargo proteins, and identifies ERGIC1 and CNIH1 as novel Sec24C‐ and Sec24A-specific cargo proteins, respectively. Proteomic analysis of vesicles reconstituted with a Sec24C mutant, bearing a compromised binding site for the ER-to-Golgi QSNARE Syntaxin5, revealed that the SM/Munc18 protein SCFD1 binds to Syntaxin5 prior to its sorting into COPII vesicles. Furthermore, analysis of Sec24D mutants implicated in the development of a syndromic form of osteogenesis imperfecta showed sorting defects for the three ER-to-Golgi QSNAREs Syntaxin5, GS27, and Bet1.


1989 ◽  
Vol 257 (1) ◽  
pp. F92-F98 ◽  
Author(s):  
T. Isozaki ◽  
K. Yoshitomi ◽  
M. Imai

The highly conductive Cl- transport pathway exists in the ascending thin limb (ATL) of Henle's loop. To characterize the mechanism of the Cl- conductance across the ATL, we examined effects on Cl- permeability across hamster ATL of Cl- transport inhibitors, including 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), diphenylamine carboxylate (DPC), and anthracene-9-carboxylic acid (9-AC), by the in vitro microperfusion technique. NPPB added to the bath caused reversible suppression of the relative permeability of Cl- to Na+ (PCl/PNa), as estimated from the NaCl diffusion voltage in a dose-dependent manner in a range from 3 x 10(-6) to 10(-3) M. The concentration of NPPB that inhibited PCl/PNa by 50% (ID50) was approximately 3 X 10(-5) M. When 3 X 10(-5) M NPPB was added to the bath, the lumen-to-bath flux coefficient for 36Cl (Kl----b,Cl- 10(-7) cm2/s) was decreased from 130.7 +/- 7.3 to 52.2 +/- 11.6 (n = 7, P less than 0.01). Application of NPPB in the lumen also caused reversible suppression of PCl/PNa, but this effect was less potent compared with the application of the drug via the bath. Whereas 10(-3) M 9-AC or 10(-3) M DPC decreased PCl/PNa by 6.5 +/- 1.2 and 10.2 +/- 2.6%, respectively, 3 X 10(-4) M NPPB decreased PCl/PNa by 69.7 +/- 3.8%. In maleimide-treated tubules, addition of 10(-3) M N-ethylmaleimide (NEM) increased PCl/PNa from 1.0 +/- 0.1 to 1.8 +/- 0.1 (n = 7, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


2020 ◽  
Vol 7 (9) ◽  
pp. 200441
Author(s):  
Thomas Stahnke ◽  
Beata Gajda-Deryło ◽  
Anselm G. Jünemann ◽  
Oliver Stachs ◽  
Katharina A. Sterenczak ◽  
...  

To elucidate and to inhibit post-surgical fibrotic processes after trabeculectomy in glaucoma therapy, we measured gene expression in a fibrotic cell culture model, based on transforming growth factor TGF-β induction in primary human tenon fibroblasts (hTFs), and used Connectivity Map (CMap) data for drug repositioning. We found that specific molecular mechanisms behind fibrosis are the upregulation of actins, the downregulation of CD34, and the upregulation of inflammatory cytokines such as IL6, IL11 and BMP6 . The macrolide antibiotic Josamycin (JM) reverses these molecular mechanisms according to data from the CMap, and we thus tested JM as an inhibitor of fibrosis. JM was first tested for its toxic effects on hTFs, where it showed no influence on cell viability, but inhibited hTF proliferation in a concentration-dependent manner. We then demonstrated that JM suppresses the synthesis of extracellular matrix (ECM) components. In hTFs stimulated with TGF-β1, JM specifically inhibited α-smooth muslce actin expression, suggesting that it inhibits the transformation of fibroblasts into fibrotic myofibroblasts. In addition, a decrease of components of the ECM such as fibronectin, which is involved in in vivo scarring, was observed. We conclude that JM may be a promising candidate for the treatment of fibrosis after glaucoma filtration surgery or drainage device implantation in vivo .


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaolu Qu ◽  
Leyan Yan ◽  
Rihong Guo ◽  
Hui Li ◽  
Zhendan Shi

LPS is a major endotoxin produced by gram-negative bacteria, and exposure to it commonly occurs in animal husbandry. Previous studies have shown that LPS infection disturbs steroidogenesis, including progesterone production, and subsequently decreases animal reproductive performance. However, little information about the underlying mechanisms is available thus far. In the present study, an in vitro-luteinized porcine granulosa cell model was used to study the underlying molecular mechanisms of LPS treatment. We found that LPS significantly inhibits progesterone production and downregulates the expressions of progesterone synthesis-associated genes (StAR, CYP11A1, and 3β-HSD). Furthermore, the levels of ROS were significantly increased in an LPS dose-dependent manner. Moreover, transcriptional factors GATA4 and GATA6, but not NR5A1, were significantly downregulated. Elimination of LPS-stimulated ROS by melatonin or vitamin C could restore the expressions of GATA4, GATA6, and StAR. In parallel, StAR expression was also inhibited by the knockdown of GATA4 and GATA6. Based on these data, we conclude that LPS impairs StAR expression via the ROS-induced downregulation of GATA4 and GATA6. Collectively, these findings provide new insights into the understanding of reproductive losses in animals suffering from bacterial infection and LPS exposure.


2004 ◽  
Vol 15 (11) ◽  
pp. 4990-5000 ◽  
Author(s):  
Adriana Pagano ◽  
Pascal Crottet ◽  
Cristina Prescianotto-Baschong ◽  
Martin Spiess

The involvement of clathrin and associated adaptor proteins in receptor recycling from endosomes back to the plasma membrane is controversial. We have used an in vitro assay to identify the molecular requirements for the formation of recycling vesicles. Cells expressing the asialoglycoprotein receptor H1, a typical recycling receptor, were surface biotinylated and then allowed to endocytose for 10 min. After stripping away surface-biotin, the cells were permeabilized and the cytosol washed away. In a temperature-, cytosol-, and nucleotide-dependent manner, the formation of sealed vesicles containing biotinylated H1 could be reconstituted. Vesicle formation was strongly inhibited upon immunodepletion of adaptor protein (AP)-1, but not of AP-2 or AP-3, from the cytosol, and was restored by readdition of purified AP-1. Vesicle formation was stimulated by supplemented clathrin, but inhibited by brefeldin A, consistent with the involvement of ARF1 and a brefeldin-sensitive guanine nucleotide exchange factor. The GTPase rab4, but not rab5, was required to generate endosome-derived vesicles. Depletion of rabaptin-5/rabex-5, a known interactor of both rab4 and γ-adaptin, stimulated and addition of the purified protein strongly inhibited vesicle production. The results indicate that recycling is mediated by AP-1/clathrin-coated vesicles and regulated by rab4 and rabaptin-5/rabex-5.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1366-1366
Author(s):  
Lisa M. Giammona ◽  
Eleftherios Papoutsakis ◽  
William M. Miller

Abstract Megakaryocyte (Mk) maturation includes the development of polyploid cells via endomitosis. In vitro models of Mk differentiation can be used to gain a better understanding of the molecular mechanisms controlling this process. However, it is challenging to achieve ploidy levels in cultured human cells that are as high as those observed in vivo. Others have recently reported the use of chemical inhibitors to increase Mk ploidy (Lannutti et al., Blood 105:3875, 2005). Here, we show that nicotinamide (NIC), a form of vitamin B3, enhances the normal process of Mk polyploidization and leads to both a greater fraction of high ploidy cells and a greater degree of polyploidization. Human mobilized peripheral blood CD34+ cells were cultured in serum-free medium supplemented with thrombopoietin (TPO) to induce Mk differentiation. Beginning on day 5 of culture, cells were treated with nicotinamide (3 and 6.25 mM) and monitored for DNA content, growth, apoptosis, and surface marker expression. NIC treatment resulted in a greater fraction of Mks with high ploidy (DNA content greater than or equal to 8N). The ploidy of NIC treated cells continued to increase over the duration of the 13-day culture, whereas the ploidy of untreated cells peaked at day 9. On day 13 (8 days of NIC exposure), the percentages of high ploidy Mks for the untreated, 3 mM NIC, and 6.25 mM NIC conditions were 23%, 48%, and 63%, respectively. Furthermore, cells treated with NIC reached ploidy levels of 64N and 32N for 6.25 and 3 mM NIC, respectively, compared to 16N for untreated cells. NIC-treated cells also displayed dramatic differences in morphology - characterized by an increase in cell size, the presence of a more highly lobated nucleus, and an increased frequency of proplatelet-forming cells. Nicotinamide is known to inhibit poly(ADP-ribose) polymerase (PARP) and Sir2, which are both NAD+ dependent enzymes. Preliminary experiments show that PARP activity is low in cultured Mks and is not affected by addition of 6.25 mM NIC. Continued exposure (beginning at day 5) to the PARP inhibitors (and nicotinamide analogs) 3-aminobenzamide (3-AB) and benzamide at concentrations of 1, 3, and 6.25 mM was toxic to cells in a dose dependent manner. Interestingly, high doses of NIC (25 and 50 mM) were also toxic to cells. Remarkably, while Mk polyploidization and apoptosis are typically correlated, the increase in DNA content observed for NIC-treated cells occurred without significantly affecting the percentage of apoptotic Mks (assessed by Annexin V staining). These data suggest that it may be possible to partially decouple Mk apoptosis and polyploidization. Furthermore, while 6.25 mM NIC inhibited cell proliferation by ~35%, total expansion of cells cultured with 3 mM NIC was similar to that of untreated cells. This, combined with similar Mk commitment, as defined by a similar percentage of CD41+ cells, resulted in a greater overall number of high ploidy Mks in cultures treated with NIC. Since there is a direct correlation between Mk DNA content and platelet production (Mattia et al., Blood 99:888, 2002), these results suggest a possible therapeutic benefit of NIC for the management of thrombocytopenia. Similarly, NIC could also be used as an additive to ex vivo Mk cultures destined for transplantation. Figure Figure


Sign in / Sign up

Export Citation Format

Share Document