scholarly journals ROS-Induced GATA4 and GATA6 Downregulation Inhibits StAR Expression in LPS-Treated Porcine Granulosa-Lutein Cells

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaolu Qu ◽  
Leyan Yan ◽  
Rihong Guo ◽  
Hui Li ◽  
Zhendan Shi

LPS is a major endotoxin produced by gram-negative bacteria, and exposure to it commonly occurs in animal husbandry. Previous studies have shown that LPS infection disturbs steroidogenesis, including progesterone production, and subsequently decreases animal reproductive performance. However, little information about the underlying mechanisms is available thus far. In the present study, an in vitro-luteinized porcine granulosa cell model was used to study the underlying molecular mechanisms of LPS treatment. We found that LPS significantly inhibits progesterone production and downregulates the expressions of progesterone synthesis-associated genes (StAR, CYP11A1, and 3β-HSD). Furthermore, the levels of ROS were significantly increased in an LPS dose-dependent manner. Moreover, transcriptional factors GATA4 and GATA6, but not NR5A1, were significantly downregulated. Elimination of LPS-stimulated ROS by melatonin or vitamin C could restore the expressions of GATA4, GATA6, and StAR. In parallel, StAR expression was also inhibited by the knockdown of GATA4 and GATA6. Based on these data, we conclude that LPS impairs StAR expression via the ROS-induced downregulation of GATA4 and GATA6. Collectively, these findings provide new insights into the understanding of reproductive losses in animals suffering from bacterial infection and LPS exposure.

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Yun Li ◽  
Mingjie Jiang ◽  
Mingshun Li ◽  
Yingjie Chen ◽  
Chunshan Wei ◽  
...  

Compound Phyllanthus urinaria L (CP) is a traditional formula widely used in clinical practice for hepatocellular carcinoma (HCC), especially HBV-related HCC. HBx, HBV X gene encoded X protein, has positive correlation with the abnormal SHH pathway in HBV-related HCC. So, we predicted that CP has the capability of anti-HBV-related HCC maybe via inactivating the HBx-Hedgehog pathway axis. HepG2-HBx cells, HBx overexpression, were treated with CP (70μg/ml and 35 μg/ml, respectively) for 48 hours and the mice which received the HepG2-HBx cells were treated with CP (625mg/kg and 300 mg/kg, respectively) for 17 days to evaluate the effect of CP on HBV-related HCC. HBx could accelerate HepG2 cells proliferation, clone formation, and migration in vitro and also could strengthen tumor growth in mice. However, CP could significantly decrease HepG2-HBx cells proliferation, clone formation, and migration in vitro and also could inhibit tumors growth in mice in a dose-dependent manner. Mechanism studies suggested that HBx upregulated the mRNA and proteins expression of Sonic hedgehog (SHH), transmembrane receptor patched (PTCH-1), smoothened (SMO), oncogene homolog transcription factors-1 (GLI-1), and oncogene homolog transcription factors-2 (GLI-2), which are compositions of the SHH pathway. CP could inhibit the mRNA and proteins expression of SHH, PTCH-1, GLI-1, and HBx. It may be one of the underlying mechanisms of CP to delay the HBV-related HCC development through the HBx-SHH pathway axis inactivation.


1998 ◽  
Vol 275 (6) ◽  
pp. F938-F945 ◽  
Author(s):  
Evelyne Moreau ◽  
José Vilar ◽  
Martine Lelièvre-Pégorier ◽  
Claudie Merlet-Bénichou ◽  
Thierry Gilbert

Vitamin A and its derivatives have been shown to promote kidney development in vitro in a dose-dependent fashion. To address the molecular mechanisms by which all- trans-retinoic acid (RA) may regulate the nephron mass, rat kidneys were removed on embryonic day 14( E14) and grown in organ culture under standard or RA-stimulated conditions. By using RT-PCR, we studied the expression of the glial cell line-derived neurotrophic factor (GDNF), its cell surface receptor-α (GDNFR-α), and the receptor tyrosine kinase c-ret, known to play a major role in renal organogenesis. Expression of GDNF and GDNFR-α transcripts was high at the time of explantation and remained unaffected in culture with or without RA. In contrast, c-ret mRNA level, which was low in E14 metanephros and dropped rapidly in vitro, was increased by RA in a dose-dependent manner. The same is true at the protein level. Exogenous GDNF barely promotes additional nephron formation in vitro. Thus the present data establish c-ret as a key target of retinoids during kidney organogenesis.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yong-Ge Guan ◽  
Jin-Bin Liao ◽  
Kun-Yin Li ◽  
Yu-Cui Li ◽  
Yang Song ◽  
...  

Background. Shaoyao-Gancao Decoction (SGD), a well-known traditional Chinese medicine prescription, has been widely used to treat adenomyosis, dysmenorrhea, abdominal pain, and inflammation in Asia. However, the mechanism underlying the effectiveness of SGD in the treatment of adenomyosis still remains elusive. The present study aimed to investigate the bioactivity of SGD and its underlying molecular mechanisms using cultured human adenomyosis-derived cells.Methods. Human adenomyosis-derived cells were treated with SGD and its major constituents (paeoniflorin and liquiritin)in vitro. Effects of SGD, paeoniflorin, and liquiritin on cell proliferation and apoptosis were examined by MTT assay and flow cytometry analyses. The effects of SGD, paeoniflorin, and liquiritin on the production of PGE2and PGF2αwere assayed using ELISA. ER-αand OTR mRNA expression levels were also evaluated by real-time qRT-PCR.Results. SGD, paeoniflorin, and liquiritin inhibited proliferation and induced apoptosis of human adenomyosis-derived cells in a dose-dependent manner. SGD and paeoniflorin significantly reduced the PGE2and PGF2αproduction. Furthermore, they remarkably decreased the mRNA levels of ER-αand OTR.Conclusions. The results of this study provide possible mechanisms for the bioactivity of SGD for treating adenomyosis and contribute to the ethnopharmacological knowledge about this prescription.


2021 ◽  
Vol 16 (11) ◽  
pp. 1934578X2110399
Author(s):  
Bing Liu ◽  
Hao Lian

Objectives: Caesalpinia Sappan L. is a traditional Chinese medicine with a long history. Recent studies have confirmed that Sappan has an antitumor effect, but its specific mechanism is still unclear. Methods: In this study, we used network pharmacology to predict the target and signal pathway of Sappan. In addition, the Cancer Genome Atlas and cancer cell lines encyclopedia large-scale genomic databases were used to analyze the relationship between different subtypes of Akt. Based on molecular docking technology, the interaction mode between small molecule compounds and protein targets was explored. Finally, we studied the effect of Sappan on Akt protein expression by Western blot in vitro. Results: AKT1 and AKT2 were significantly expressed in breast cancer cells, but they were significantly different from AKT3. Finally, molecular docking analysis showed that (3R,5R)-1,3,4,5-tetrakis(((E)-3-(3,4-dihydroxyphenyl)acryloyl)oxy)cyclohexane-1-carboxylic acid had a very ideal binding mode with Akt. Subsequent experiments showed that Sappan extract could induce apoptosis of HepG2 cells in a dose-dependent manner, and down regulate the phosphorylation level of Akt protein thr308 in a dose-dependent manner. Conclusions: This study provides new ideas for Sappan's anticancer research through the strategy of system pharmacology.


2020 ◽  
Author(s):  
Bing Wei ◽  
Shangli Yao ◽  
Ming Gao ◽  
Zujun Wang ◽  
Wenyan Wang ◽  
...  

Abstract Resveratrol (RES), a natural compound found in red wine, has previously reported to suppress ovarian cancer (OC) cell growth in vitro and in vivo; however, its potential molecular mechanisms are not fully elucidated. The aim of this study is to investigate the suppressive potential of RES in OC cell growth and invasion and reveal the underlying mechanisms. Herein, we found that RES treatment obviously suppressed the proliferative and invasive capacities of OC cells, and elevated cell apoptosis in vitro. Subsequent microarray and qRT-PCR analysis further showed that microRNA-34a (miR-34a) was significantly increased by RES treatment. Moreover, the inhibitory effects of RES on OC cells were enhanced by miR-34a overexpression, whereas weakened by miR-34a inhibition in OC cells. Of note, Bcl-2, an anti-apoptotic gene, was identified as a direct target of miR-34a. Then, we revealed that RES decreased the expression of Bcl-2 in OC cells in a dose dependent manner. Furthermore, the anti-tumor effects of RES were abolished by overexpression of Bcl-2 in OC cells. Overall, these results demonstrated that RES exerts the anti-cancer effects on OC cells through the miR-34a/Bcl-2 axis.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Zhen-Zhen Guo ◽  
Qun-An Cao ◽  
Zong-Zhuang Li ◽  
Li-Ping Liu ◽  
Zhi Zhang ◽  
...  

Nicotine, a major chemical component of cigarettes, plays a pivotal role in the development of abdominal aortic aneurysm (AAA). c-Jun N-terminal kinase (JNK) has been demonstrated to participate in elastase-induced AAA. This study aimed to elucidate whether the JNK inhibitor SP600125 can attenuate nicotine plus angiotensin II- (AngII-) induced AAA formation and to assess the underlying molecular mechanisms. SP600125 significantly attenuated nicotine plus AngII-induced AAA formation. The expression of matrix metalloproteinase- (MMP-) 2, MMP-9, monocyte chemoattractant protein- (MCP-) 1, and regulated-on-activation, normal T-cells expressed and secreted (RANTES) was significantly upregulated in aortic aneurysm lesions but inhibited by SP600125.In vitro, nicotine induced the expression of MCP-1 and RANTES in both RAW264.7 (mouse macrophage) and MOVAS (mouse vascular smooth muscle) cells in a dose-dependent manner; expression was upregulated by 0.5 ng/mL nicotine but strongly downregulated by 500 ng/mL nicotine. SP600125 attenuated the upregulation of MCP-1 and RANTES expression and subsequent macrophage migration. In conclusion, SP600125 attenuates nicotine plus AngII-induced AAA formation likely by inhibiting MMP-2, MMP-9, MCP-1, and RANTES. The expression of chemokines in MOVAS cells induced by nicotine has an effect on RAW264.7 migration, which is likely to contribute to the development of nicotine-related AAA.


2017 ◽  
Vol 95 (12) ◽  
pp. 1480-1487 ◽  
Author(s):  
Chunxiang Chen ◽  
Shaorong Peng ◽  
Fanghui Chen ◽  
Lili Liu ◽  
Zhouxue Li ◽  
...  

PIO, a synthetic ligand for PPARγ, is used clinically to treat T2DM. However, little is known about its protective effects on endothelium and the underlying mechanisms. In this study, we sought to investigate the protective effects of PIO on endothelium and its probable mechanisms: 95% confluent wild type (WT) HUVECs and PPARγLow-HUVECs that we first injured with HG (33 mmol·L–1) were first pretreated with 10 μmol·L–1 of GW9662 for 30 min, and then treated the cells with different concentrations of PIO (5, 10, or 20 μmol·L–1) for 24 h. Finally, we measured the levels of NO, ET1, TNFα, and IL6 in the cell culture supernatant. These cells were then used to determine cell viability, caspase3 activity, the levels of IKKα/β mRNA, IKKα/β, and NFκB-p65. Severe dysfunction and activation of IKKα/β–NFκB signaling occurred after we exposed HUVECs to HG. Conversely, treatment with PIO significantly attenuated the dysfunction and the activation of IKKα/β–NFκB signaling induced by HG in a dose-dependent manner. Moreover, the protective effects of PIO were completely abrogated by GW9662 or down-regulation of PPARγ. Taken together, the results indicate that PIO protects HUVECs against the HG-induced dysfunction through the inhibition of IKKα/β–NFκB signaling mediated by PPARγ.


2011 ◽  
Vol 89 (12) ◽  
pp. 875-883 ◽  
Author(s):  
Xi Zhao ◽  
Yong-Lie Chao ◽  
Qian-Bing Wan ◽  
Xin-Min Chen ◽  
Peng Su ◽  
...  

Novel effective drugs are still urgently needed in the prevention and treatment of oral adenoid cystic carcinoma (ACC). In this study, we have assessed the antitumor potential and molecular mechanisms of flavokawain B (FKB) as a kava chalcone on the ACC-2 cell line in vitro. The results demonstrated that FKB could significantly inhibit the cell proliferation of ACC-2 in a dose-dependent manner that was associated with induced apoptosis and cell cycle G2-M arrest, and the half maximal inhibitory concentration (IC50) of flavokawain-B treatment for 48 h was estimated to be 4.69 ± 0.43 µmol/L. Mechanistically, FKB could induce the release of cytochrome c from mitochondria into the cytosol, and activate the cleavage of caspase-3 and, eventually, the poly(ADP-ribose) polymerase (PARP), in a dose-dependent manner, leading to marked apoptotic effect of ACC-2 cells. The apoptotic action of FKB was associated with the increased expression of proapoptotic proteins: Bim, Bax, Bak and a decreased expression of antiapoptotic Bcl-2. Among them, Bim expression was significantly induced by FKB, and knockdown of Bim expression by short-hairpin RNAs attenuated the inhibitory effect induced by FKB on ACC-2 cells. These results suggest Bim may be one of the potential transcriptional targets, and suggests the potential usefulness of FKB for the prevention and treatment of ACC.


Author(s):  
Na Yao ◽  
Qiong Xu ◽  
Jia-Kang He ◽  
Ming Pan ◽  
Zhao-Feng Hou ◽  
...  

Toxoplasma gondii is a serious hazard to public health and animal husbandry. Due to the current dilemma of treatment of toxoplasmosis, it is urgent to find new anti-T. gondii drugs to treat toxoplasmosis. In this study, the anti-T. gondii activity of Origanum vulgare essential oil (Ov EO) was firstly studied, and then, carvanol (Ca), the main ingredient of Ov EO was evaluated using the MTT assay on human foreskin fibroblast (HFF) cells in vitro. The cytotoxicity was evaluated using the MTT assay on HFF cells. The CC50 of Ov EO and Ca was 134.9 and 43.93 μg/ml, respectively. Both of them exhibited anti-parasitic activity, and inhibited the growth of T. gondii in a dose-dependent manner. For the inhibition effect, Ca was better than Ov EO at the same concentration, the IC50 of Ov EO and Ca was 16.08 and 7.688 μg/ml, respectively. In addition, treatment with Ca, was found to change the morphology of T. gondii tachyzoites and made their shapes curl up. These results showed that Ca was able to inhibit the proliferation of T. gondii by reducing invasion, which may be due to its detrimental effect on the mobility of tachyzoites. Our results indicated that Ca could be a potential new and effective drug for treating toxoplasmosis.


1996 ◽  
Vol 134 (4) ◽  
pp. 497-500 ◽  
Author(s):  
Mehmet Kuran ◽  
Peter J Broadbent ◽  
JS Morley Hutchinson

Kuran M, Broadbent PJ, Hutchinson JSM. Bovine granulosa cell culture for assessment of potency and specificity of antibodies to pregnant mares' serum gonadotrophin. Eur J Endocrinol 1996;134:497–500. ISSN 0804–4643 Antibodies to pregnant mares' serum gonadotrophin (PMSG) neutralize the effect of PMSG in vivo and increase the number of transferable embryos when administered at the optimum time relative to the preovulatory luteinizing hormone (LH) surge in PMSG-stimulated cows. The objective of the present study was to investigate the possible use of bovine granulosa cells in a serum-free culture system as a bioassay for antibodies to PMSG. Granulosa cells (2–3 × 105 viable cells) were cultured with varying doses of PMSG and/or an anti-PMSG for 4 days. Whilst progesterone production (ng/μg DNA) of granulosa cells was stimulated by PMSG (p < 0.01) in a dose-dependent manner, increasing amounts of anti-PMSG neutralized (p < 0.01) this stimulatory effect of either follicle-stimulating hormone or LH on progesterone production of bovine granulosa cells in vitro. The bovine granulosa cell culture system is a potential in vitro bioassay method for testing the specificity and the neutralizing capacity of different anti-PMSG preparations. Mehmet Kuran, Ondokuz Mayis Universitesi, Ziraat Fakultesi, Zootekni Bolumu, 55149 Samsun, Turkey


Sign in / Sign up

Export Citation Format

Share Document