scholarly journals Seneca Valley virus intercellular transmission mediated by exosomes

2020 ◽  
Author(s):  
Keshan Zhang ◽  
Guowei Xu ◽  
Shouxing Xu ◽  
Xijuan Shi ◽  
Chaochao Shen ◽  
...  

ABSTRACTExosomes are cup-shaped vesicles that are secreted by cells and are involved in the intercellular transport of a variety of substances, including proteins, RNA, and liposomes. Studies have shown that pathogenic microorganisms are contained in exosomes extracted from pathogenic micro-infected cells. The Seneca Valley virus (SVV) is a non-encapsulated single-stranded positive-strand RNA virus that causes ulceration in the pig’s nose, the appearance of blisters, and other clinical symptoms similar to foot-and-mouth disease (FMD). Whether exosomes from SVV-infected cells can mediate SVV intercellular transmission is of great significance. There have been no studies showing whether exosomes can carry SVV in susceptible and non-susceptible cells. Here, we first extracted and identified exosomes from SVV-infected IBRS-2 cells. It was confirmed that replication of SVV can be inhibited when IBRS-2 cells treated with exosomes inbihitor GW4869. Furthermore, laser confocal microscopy and qRT-PCR experiments were performed to investigate whether exosomes can carry SVV and enable the virus to proliferate in susceptible and non-susceptible cells. Finally, exosome-mediated intercellular transmission can not be completely blocked by SVV-specific neutralizing antibodies. Taken together, this study showed that exosomes extracted from the SVV-infected IBRS-2 cells can carry SVV and transmit productive SVV infection between SVV susceptible and non-susceptible cells, this transmit infection is resistant to SVV specific neutralization antibody.IMPORTANCEExosomes participate in intercellular communnication between cells. Exosomes derived from virus-infected cells can mediate virus transmission or/and regulate immune response. However, the function of exosomes that from SVV-infected host cells during SVV transmission is unclear. Here, we demonstrate SVV can utilize host exosomes to establish productive infection in intercellular transmission. Furthermore, exosome-mediated SVV transmission is resistant to SVVV-specific neutralizing antibodies. This discovery sheds light on neutralizing antibodies resistant to SVVV transmission by exosomes as a potential immune evasion mechanism.

2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Guowei Xu ◽  
Shouxing Xu ◽  
Xijuan Shi ◽  
Chaochao Shen ◽  
Junhong Hao ◽  
...  

Abstract Seneca Valley virus (SVV) is a non-encapsulated single-stranded positive-strand RNA virus whose transmission routes have not yet been fully elucidated. Exosomes have been implicated in the intercellular transport of a variety of materials, such as proteins, RNA, and liposomes. However, whether exosomes can mediate SVV intercellular transmission remains unknown. In this study, we extracted exosomes from SVV-infected IBRS-2 cells to investigate intercellular transmission. Our results suggest that the intercellular transmission of SVV is mediated by exosomes. The results of co-localization and RT-qPCR studies showed that exosomes harbor SVV and enable the virus to proliferate in both susceptible and non-susceptible cells. Furthermore, the replication of SVV was inhibited when IBRS-2 cells were treated with interfering RNA Rab27a and exosome inhibitor GW4869. Finally, neutralization experiments were performed to further verify whether the virus was encapsulated by the exosomes that mediated transmission between cells. It was found that exosome-mediated intercellular transmission was not blocked by SVV-specific neutralizing antibodies. This study reveals a new transmission route of SVV and provides clear evidence regarding the pathogenesis of SVV, information which can also be useful for identifying therapeutic interventions.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2157
Author(s):  
Norbert Odolczyk ◽  
Ewa Marzec ◽  
Maria Winiewska-Szajewska ◽  
Jarosław Poznański ◽  
Piotr Zielenkiewicz

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus that causes severe respiratory syndrome in humans, which is now referred to as coronavirus disease 2019 (COVID-19). Since December 2019, the new pathogen has rapidly spread globally, with over 65 million cases reported to the beginning of December 2020, including over 1.5 million deaths. Unfortunately, currently, there is no specific and effective treatment for COVID-19. As SARS-CoV-2 relies on its spike proteins (S) to bind to a host cell-surface receptor angiotensin-converting enzyme-2(ACE2), and this interaction is proved to be responsible for entering a virus into host cells, it makes an ideal target for antiviral drug development. In this work, we design three very short peptides based on the ACE2 sequence/structure fragments, which may effectively bind to the receptor-binding domain (RBD) of S protein and may, in turn, disrupt the important virus-host protein–protein interactions, blocking early steps of SARS-CoV-2 infection. Two of our peptides bind to virus protein with affinity in nanomolar range, and as very short peptides have great potential for drug development.


2011 ◽  
Vol 24 (1) ◽  
pp. 42-50 ◽  
Author(s):  
Ming Yang ◽  
Rebekah van Bruggen ◽  
Wanhong Xu

Seneca Valley virus (SVV), a member of the Picornaviridae family, was implicated in a suspicious vesicular disease discovered in pigs from Canada in 2007. Because any outbreak of vesicular disease in pigs is assumed to be foot-and-mouth disease (FMD) until confirmed otherwise, a test for diagnosing the presence of SVV would be a very useful tool. To develop the diagnostic tests for SVV infection, 5 monoclonal antibodies (mAbs) were produced from mice immunized with binary ethylenimine (BEI)-inactivated SVV. Using a dot blot assay, the reactivity of the mAbs was confirmed to be specific for SVV, not reacting with any of the other vesicular disease viruses tested. The mAbs demonstrated reactivity with SVV antigen in infected cells by an immunohistochemistry assay. An SVV-specific competitive enzyme-linked immunosorbent assay (cELISA) was developed using BEI-inactivated SVV antigen and a mAb for serodiagnosis. The cELISA results were compared to the indirect isotype (immunoglobulin [Ig]M and IgG) ELISA and the virus neutralization test. All SVV experimentally inoculated pigs exhibited a positive SVV-specific antibody response at 6 days postinoculation, and the sera remained positive until the end of the experiment on day 57 (>40% inhibition) using the cELISA. The cELISA reflected the profile of the indirect ELISA for both IgM and IgG. This panel of SVV-specific mAbs is valuable for the identification of SVV antigen and the serological detection of SVV-specific antibodies.


2010 ◽  
Vol 391 (12) ◽  
Author(s):  
Debora N. Okamoto ◽  
Lilian C.G. Oliveira ◽  
Marcia Y. Kondo ◽  
Maria H.S. Cezari ◽  
Zoltán Szeltner ◽  
...  

Abstract The 3C-like peptidase of the severe acute respiratory syndrome virus (SARS-CoV) is strictly required for viral replication, thus being a potential target for the development of antiviral agents. In contrast to monomeric picornavirus 3C peptidases, SARS-CoV 3CLpro exists in equilibrium between the monomer and dimer forms in solution, and only the dimer is proteolytically active in dilute buffer solutions. In this study, the increase of SARS-CoV 3CLpro peptidase activity in presence of kosmotropic salts and crowding agents is described. The activation followed the Hofmeister series of anions, with two orders of magnitude enhancement in the presence of Na2SO4, whereas the crowding agents polyethylene glycol and bovine serum albumin increased the hydrolytic rate up to 3 times. Kinetic determinations of the monomer dimer dissociation constant (K d) indicated that activation was a result of a more active dimer, without significant changes in K d values. The activation was found to be independent of substrate length and was derived from both k cat increase and K m decrease. The viral peptidase activation described here could be related to the crowded intracellular environment and indicates a further fine-tuning mechanism for biological control, particularly in the microenvironment of the vesicles that are induced in host cells during positive strand RNA virus infection.


2006 ◽  
Vol 80 (8) ◽  
pp. 4147-4156 ◽  
Author(s):  
Brian Dove ◽  
Gavin Brooks ◽  
Katrina Bicknell ◽  
Torsten Wurm ◽  
Julian A. Hiscox

ABSTRACT In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G2/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G1 regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G2/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the G0 phase or asynchronously replicating cells. Our data suggested that IBV induces a G2/M phase arrest in infected cells to promote favorable conditions for viral replication.


2021 ◽  
Author(s):  
Young-Il Kim ◽  
Dokyun Kim ◽  
Kwang-Min Yu ◽  
Hogyu David Seo ◽  
Shin-Ae Lee ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of COVID-19 pandemic, enters host cells via the interaction of its Receptor-Binding Domain (RBD) of Spike protein with host Angiotensin-Converting Enzyme 2 (ACE2). Therefore, RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling H. pylori-bullfrog ferritin nanoparticles as an antigen delivery. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. 16-20 months-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD-nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD-nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss and clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious viruses in nasal washes and lungs as well as viral RNA in respiratory organs. This study demonstrates the Spike RBD-nanoparticle as an effective protein vaccine candidate against SARS-CoV-2.


Author(s):  
liu wenzhong ◽  
Li hualan

<p>The novel coronavirus pneumonia (COVID-19) is an infectious acute respiratory infection caused by the novel coronavirus. The virus is a positive-strand RNA virus with high homology to bat coronavirus. In this study, conserved domain analysis, homology modeling, and molecular docking were used to compare the biological roles of certain proteins of the novel coronavirus. The results showed the ORF8 and surface glycoprotein could bind to the porphyrin, respectively. At the same time, orf1ab, ORF10, and ORF3a proteins could coordinate attack the heme on the 1-beta chain of hemoglobin to dissociate the iron to form the porphyrin. The attack will cause less and less hemoglobin that can carry oxygen and carbon dioxide. The lung cells have extremely intense poisoning and inflammatory due to the inability to exchange carbon dioxide and oxygen frequently, which eventually results in ground-glass-like lung images. The mechanism also interfered with the normal heme anabolic pathway of the human body, is expected to result in human disease. According to the validation analysis of these finds, chloroquine could prevent orf1ab, ORF3a, and ORF10 to attack the heme to form the porphyrin, and inhibit the binding of ORF8 and surface glycoproteins to porphyrins to a certain extent, effectively relieve the symptoms of respiratory distress. Favipiravir could inhibit the envelope protein and ORF7a protein bind to porphyrin, prevent the virus from entering host cells, and catching free porphyrins. Because the novel coronavirus is dependent on porphyrins, it may originate from an ancient virus. Therefore, this research is of high value to contemporary biological experiments, disease prevention, and clinical treatment.<br></p>


Author(s):  
liu wenzhong ◽  
Li hualan

<p>The novel coronavirus pneumonia (COVID-19) is an infectious acute respiratory infection caused by the novel coronavirus. The virus is a positive-strand RNA virus with high homology to bat coronavirus. In this study, conserved domain analysis, homology modeling, and molecular docking were used to compare the biological roles of certain proteins of the novel coronavirus. The results showed the ORF8 and surface glycoprotein could bind to the porphyrin, respectively. At the same time, orf1ab, ORF10, and ORF3a proteins could coordinate attack the heme on the 1-beta chain of hemoglobin to dissociate the iron to form the porphyrin. The attack will cause less and less hemoglobin that can carry oxygen and carbon dioxide. The lung cells have extremely intense poisoning and inflammatory due to the inability to exchange carbon dioxide and oxygen frequently, which eventually results in ground-glass-like lung images. The mechanism also interfered with the normal heme anabolic pathway of the human body, is expected to result in human disease. According to the validation analysis of these finds, chloroquine could prevent orf1ab, ORF3a, and ORF10 to attack the heme to form the porphyrin, and inhibit the binding of ORF8 and surface glycoproteins to porphyrins to a certain extent, effectively relieve the symptoms of respiratory distress. Favipiravir could inhibit the envelope protein and ORF7a protein bind to porphyrin, prevent the virus from entering host cells, and catching free porphyrins. Because the novel coronavirus is dependent on porphyrins, it may originate from an ancient virus. Therefore, this research is of high value to contemporary biological experiments, disease prevention, and clinical treatment.<br></p>


2021 ◽  
Author(s):  
Rohit Verma ◽  
Sandhini Saha ◽  
Shiv Kumar ◽  
Shailendra Mani ◽  
Tushar Kanti Maiti ◽  
...  

AbstractSevere acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is a positive-strand RNA virus. Viral genome is capped at the 5’-end, followed by an untranslated region (UTR). There is poly-A tail at 3’-end, preceded by an UTR. Self-interaction between the RNA regulatory elements present within 5’- and 3’-UTRs as well as their interaction with host/virus-encoded proteins mediate the function of 5’- and 3’-UTRs. Using RNA-protein interaction detection (RaPID) assay coupled to liquid chromatography with tandem mass-spectrometry, we identified host interaction partners of SARS-CoV-2 5’- and 3’-UTRs and generated an RNA-protein interaction network. By combining these data with the previously known protein-protein interaction data proposed to be involved in virus replication, we generated the RNA-protein-protein interaction (RPPI) network, likely to be essential for controlling SARS-CoV-2 replication. Notably, bioinformatics analysis of the RPPI network revealed the enrichment of factors involved in translation initiation and RNA metabolism. Lysosome-associated membrane protein-2a (Lamp2a) was one of the host proteins that interact with the 5’-UTR. Further studies showed that Lamp2 level is upregulated in SARS-CoV-2 infected cells and overexpression of Lamp2a and Lamp2b variants reduced viral RNA level in infected cells and vice versa. In summary, our study provides an useful resource of SARS-CoV-2 5’- and 3’-UTR binding proteins and reveal the antiviral function of host Lamp2 protein.ImportanceReplication of a positive-strand RNA virus involves an RNA-protein complex consisting of viral genomic RNA, host RNA(s), virus-encoded proteins and host proteins. Dissecting out individual components of the replication complex will help decode the mechanism of viral replication. 5’- and 3’-UTRs in positive-strand RNA viruses play essential regulatory roles in virus replication. Here, we identified the host proteins that associate with the UTRs of SARS-CoV-2, combined those data with the previously known protein-protein interaction data (expected to be involved in virus replication) and generated the RNA-protein-protein interaction (RPPI) network. Analysis of the RPPI network revealed the enrichment of factors involved in translation initiation and RNA metabolism, which are important for virus replication. Analysis of one of the interaction partners of the 5’-UTR (Lamp2a) demonstrated its antiviral role in SARS-CoV-2 infected cells. Collectively, our study provides a resource of SARS-CoV-2 UTR-binding proteins and identifies an antiviral role of host Lamp2a protein.


2013 ◽  
Vol 41 (1) ◽  
pp. 299-302 ◽  
Author(s):  
Jameel M. Inal ◽  
Samireh Jorfi

Coxsackievirus B1, a member of the Picornaviridae family is a non-enveloped single-stranded RNA virus associated with human diseases including myocarditis and pancreatitis. Infection of the intestinal mucosa, lined by polarized epithelial cells, requires interaction of coxsackievirus with apically located DAF (decay-accelerating factor) before transport to the basolaterally located CAR (coxsackie and adenovirus receptor), where entry is mediated by endocytosis. As with many other non-enveloped viruses, coxsackievirus has to induce lysis of host cells in order to perpetuate infection. However, recent evidence indicates that virus spread to secondary sites is not only achieved by a lytic mechanism and a non-lytic cell–cell strategy has been suggested for coxsackievirus B3. A physical interaction between infected and non-infected cells has been shown to be an efficient mechanism for retroviral transmission and one type of extracellular vesicle, the exosome, has been implicated in HIV-1 transmission. HIV-1 also takes advantage of depolymerization of actin for spread between T-cells. Calpain-mediated depolymerization of the actin cytoskeleton, as a result of increases in intracellular calcium concentration during coxsackievirus infection, would result in a release of host cell-derived microvesicles. If so, we speculate that maybe such microvesicles, increasingly recognized as major vehicles mediating intercellular communication, could play a role in the intercellular transmission of non-enveloped viruses.


Sign in / Sign up

Export Citation Format

Share Document