scholarly journals Incidence and susceptibility patterns of urine bacterial flora in young females

2020 ◽  
Author(s):  
Ashwag Shami ◽  
Samiah Al-Mijalli ◽  
Ali Somily ◽  
Fawziah M. Albarakaty ◽  
Samah Awad AbduRahim

AbstractBackgroundIt has been established that the urinary tract is not sterile, however, research related to the study of urine bacteria are limited. Our work aims to study the frequency and patterns of resistance of normal urinary aerobic bacterial flora.MethodsClean catch midstream urine specimens were collected from 120 young healthy females, and then cultured. Identification of bacteria and antimicrobial susceptibility were done by means of Biomérieux VITEK® 2 automated systems. Subjects who have undergone antimicrobial treatment in one month weren’t included.ResultsThe incidence of positive bacterial cultures was 54.2%, of which 21.5% were ploymicrobial. 107 bacterial isolates that encompass 12 genera and 27 species that were predominated by Gram-positive bacteria (72%) were cultivated. Staphylococcaceae (46.1%) and Enterobacteriaceae (17.8%) were the most frequently isolates among Gram positive and Gram negative bacteria respectively, from them 36 species have been identified as b lactamase producers. The top four frequently isolated bacteria are Micrococcus species (16%), Staphylococcus haemolyticus (13.2%), Staphylococcus aureus (10%), and Klebsiella pneumoniae (10%). Twenty two bacterial species were subjected to antimicrobial susceptibility testing by using broad and narrow spectrum antibiotics and antimicrobials. Ampicillin showed the lowest susceptibility rate against Gram positives, followed by erythromycin and azithromycin. The lesser antimicrobial susceptibility potential among Gram negative bacteria was exhibited against ampicillin, followed by piperacillin and cefotaxime.ConclusionOur findings emphasize the importance of highlighting urine bacterial flora in research especially those related to susceptibility patterns, employing more advanced culture methods as multiple drug resistant bacteria were isolated.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Melkam Birru ◽  
Melat Woldemariam ◽  
Aseer Manilal ◽  
Addis Aklilu ◽  
Tsegaye Tsalla ◽  
...  

AbstractBacterial bloodstream infections are of great concern globally. Of late, the emergence of drug resistant bacteria worsen the related morbidity and mortality. This study was aimed to determine the bacterial profile, antimicrobial susceptibility patterns, and associated factors among the blood stream infection (BSI) suspected patients attending the Arba Minch General Hospital (AMGH), southern Ethiopia, from 01 June through 31st August, 2020. A cross-sectional study was conducted among 225 BSI suspected patients. Systematic random sampling method was used to select patients. Blood culture was done to isolate bacterial pathogens. Antimicrobial susceptibility test was performed by employing the Kirby-Bauer disc diffusion method. Descriptive statistics and multivariable logistic regression analysis were done by Statistical Package for Social Service (SPSS) version 22. The rate of prevalence of bacteriologically confirmed cases was 22/225 (9.8%). Majority of BSI were caused by Gram-positive cocci, 13/22 (59.1%), particularly the isolates of S. aureus, 7/22 (31.8%) followed by Enterococci species, 4/22 (18.2%) and coagulase-negative Staphylococci (CoNS), 2/22 (9.1%). Among the Gram-negative bacteria 9/22 (41.1%), Klebsiella species 4/22 (18.2%) was the prominent one followed by Escherichia coli 2/22 (9.1%), Pseudomonas aeruginosa 2/22 (9.1%), and Enterobacter species 1/22 (4.5%). All the isolates of Gram-negative bacteria were susceptible to meropenem whereas 69.2% of the isolates of Gram-positive counterparts were susceptible to erythromycin. Slightly above two third (68.2%) of the total isolates were multidrug resistant. Insertion of a peripheral intravenous line was significantly associated with BSI [p = 0.03; Adjusted Odds Ratio = 4.82; (Confidence Interval: 1.08–21.46)]. Overall results revealed that eventhough the prevalence of BSI in Arba Minch is comparatively lower (9.8%), multidrug resistance is alarmingly on the rise, which is to be addressed through effective surveillance and control strategies.


2018 ◽  
Vol 10 (3) ◽  
pp. 622-628
Author(s):  
Fitri Arum Sasi ◽  
Hermin Pancasakti Kusumaningrum ◽  
Anto Budiharjo

Indigenous bacteria are able to remove the metals contamination in environment. This study aimed to assess the resistance of bacterial species to Zinc (Zn) in Banger River, Pekalongan City. The bacteria from three different parts of Banger River were isolated and inoculated in Zn-selective medium. Then, molecular identification to determine the bacteria species was conducted using polymerase chain reaction (PCR) by applying forward-reverse 16SrRNA gene primers. The sequences analysis was conducted using MUSCLE and MEGA6. There were seven dominant species that possibly resistant to Zn. Approximately, every isolate could reach more than 95 % from 2000 ppm of Zn in the medium. The higher absorption of Zn was found in Z5 isolate. The seven bacteria species were clustered into nine genera i.e. Klebsiela, Xenorhabdus, Cronobacter, Enterobacter, Escherichia, Shigella and Sporomusa known as Gram Negative bacteria and Clostridium and Bacillus as Gram Positive bacteria. In Gram Positive bacteria, especially Bacillus sp, carboxyl group in peptidoglycan play a role as metal binder. In Gram-negative bacteria, lipopolysaccharide (LPS) which is highly anionic component on the outer membrane, able to catch the Zn. Besides that, Enterobacter activates endogen antioxidants such as glutathione peroxidase (GSHPx), glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD). The research found there was possible seven novel indigenous bacteria species in Banger that able to remove Zn from the sediment extremely. This finding can be developed as an eco-friendly approach to reduce metals pollution using local microorganisms.


2020 ◽  
Vol 114 (12) ◽  
pp. 962-973
Author(s):  
Dereje Nigussie ◽  
Eyasu Makonnen ◽  
Belete Adefris Legesse ◽  
Abebaw Fekadu ◽  
Gail Davey

Abstract Background Lymphoedema is caused by dysfunction of the lymphatic system resulting in accumulation of high-protein content fluid in the interstitial space. To date, the bacteria associated with wound infections of patients with lower limb lymphoedema in Ethiopia have not been studied. This study identified pathogenic bacteria involved in wound infection and assessed antimicrobial susceptibility patterns in patients with lymphoedema in Ethiopia. Methods Swab samples were collected from the wounds of patients with lymphoedema and cultured using standard microbiological techniques. Micro-organisms were identified by colony morphology followed by identification and antimicrobial susceptibility testing using the automated VITEK 2 COMPACT Microbial Detection System. Results Swabs were collected from 103 patients and 84 were culture positive: 44 (52.4%) culture-positive samples showed polymicrobial growth and 40 (47.6%) grew single bacterial isolates. In total, 134 isolates were obtained, of which 26 gram-negative and 12 gram-positive bacterial species were identified. A total of 28/63 (44.4%) gram-negative isolates and 3/57 (5.3%) gram-positive isolates were multiple drug resistant. There was no resistance to ciprofloxacin, moxifloxacin or gentamycin among gram-negative or gram-positive bacteria. Conclusion In this study, many infections were polymicrobial and showed multiple drug resistance. Fluoroquinolones and gentamycin, however, seemed to be effective against bacterial wound infection in this setting.


Folia Medica ◽  
2019 ◽  
Vol 61 (4) ◽  
pp. 522-528
Author(s):  
Stela K. Peycheva ◽  
Elisaveta G. Apostolova ◽  
Zhivko L. Peychev ◽  
Petya A. Gardjeva ◽  
Mihaela S. Shishmanova-Doseva ◽  
...  

Introduction: In children and adolescents, the most common periodontal disease is the plaque-induced gingivitis.Aim: The aim of this study was to reveal the bacterial species associated with supragingival plaque of Bulgarian adolescents diagnosed with plaque-induced gingivitis.Materials and methods: Supragingival plaque samples from 70 healthy subjects with moderate plaque-induced gingivitis (37 females and 33 males), aged 12-18 years, were obtained and examined microbiologically.Results: A total of 224 microorganisms were isolated. Gram-negative bacteria were predominant compared to Gram-positive [132 (59%) vs. 92 (41%), p<0.001]. Aerobic microorganisms were detected more often than anaerobic (151; 67.5% vs. 73; 32.5%, p<0.001). The Streptococcus mutans group and Neisseria spp. were isolated from all adolescents. The frequency of isolation of C. albicans was relatively lower &ndash; 11 (15.7%). The anaerobes showed much greater microbial diversity (12 pathogen groups were isolated). Gram-negative rods were isolated from 57 of the adolescents (isolation frequency 81.4%). F. varium, P. melaninogenica, P. intermedia and P. assacharolyticus were detected respectively in 12 (16%), 9 (12%), 8 (11%) and 7 (10%) samples. The less frequently isolated anaerobes were Gram-positive cocci, Gram-negative cocci, Bacteroides uniformis and Bifidobacterium spp. together.Conclusion: The most frequently isolated microbiota in our study is part of the normal oral bacterial flora. The presence of anaerobes such as Prevotella, Fusobacterium, Bacteroides and Porphyromonas reflects the gradual change of the flora to more complex one. The results of quantitative and qualitative evaluation of the plaque of adolescents with moderate plaque-induced gingivitis may contribute to the selection of the prevention and treatment of this disease.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246937
Author(s):  
Lillian Musila ◽  
Cecilia Kyany’a ◽  
Rosslyn Maybank ◽  
Jason Stam ◽  
Valerie Oundo ◽  
...  

Carbapenem-resistant gram-negative bacteria are an increasingly significant clinical threat globally. This risk may be underestimated in Kenya as only four carbapenemase genes in three bacterial species have been described. The study aimed to understand the antibiotic resistance profiles, genes, sequence types, and distribution of carbapenem-resistant gram-negative bacteria from patients in six hospitals across five Kenyan counties by bacterial culture, antibiotic susceptibility testing, and whole-genome sequence analysis. Forty-eight, non-duplicate, carbapenem non-susceptible, clinical isolates were identified across the five counties (predominantly in Nairobi and Kisii): twenty-seven Acinetobacter baumannii, fourteen Pseudomonas aeruginosa, three Escherichia coli, two Enterobacter cloacae, and two Klebsiella pneumoniae. All isolates were non-susceptible to β-lactam drugs with variable susceptibility to tigecycline (66%), minocycline (52.9%), tetracycline (29.4%), and levofloxacin (22.9%). Thirteen P. aeruginosa isolates were resistant to all antibiotics tested. Eleven carbapenemase genes were identified: blaNDM-1, blaOXA-23, -58, -66, -69, and -91 in A. baumannii (STs 1, 2, 164 and a novel ST1475), blaNDM-1 in E. cloacae (STs 25,182), blaNDM-1, blaVIM-1and -6, blaOXA-50 in P. aeruginosa (STs 316, 357, 654, and1203), blaOXA-181, blaNDM-1 in K. pneumoniae (STs 147 and 219), and blaNDM-5 in E. coli (ST164). Five A. baumannii isolates had two carbapenemases, blaNDM-1, and either blaOXA-23 (4) or blaOXA-58 (1). AmpC genes were detected in A. baumannii (blaADC-25), E. cloacae (blaDHA-1 and blaACT-6, 16), and K. pneumoniae (blaCMY). Significant multiple-drug resistant genes were the pan-aminoglycoside resistance16srRNA methyltransferase armA, rmtB, rmtC, and rmtF genes. This study is the first to report blaOXA-420, -58, -181, VIM-6, and blaNDM-5 in Kenyan isolates. High-risk STs of A. baumannii (ST1475, ST2), E. cloacae ST182, K. pneumoniae ST147, P. aeruginosa (ST357, 654), and E. coli ST167, ST648 were identified which present considerable therapeutic danger. The study recommends urgent carbapenem use regulation and containment of high-risk carbapenem-resistant bacteria.


Author(s):  
Saad Alhumaid ◽  
Abbas Al Mutair ◽  
Zainab Al Alawi ◽  
Ahmad J. Alzahrani ◽  
Mansour Tobaiqy ◽  
...  

Abstract Background Studying time-related changes in susceptible pathogens causing healthcare-associated infections (HAIs) is vital in improving local antimicrobial and infection control practices. Objectives Describe susceptibility patterns to several antimicrobials in gram-positive and gram-negative pathogens isolated from patients causing HAIs at three private tertiary care hospitals in Saudi Arabia over a 5-year period. Methods Data on trends of antimicrobial susceptibility among bacteria causing HAIs events in children and adults at three tertiary private hospitals located in Riyadh and Qassim, Saudi Arabia, were collected retrospectively between 2015 and 2019 using the surveillance data datasets. Results Over a 5-year period, 38,624 pathogens caused 17,539 HAI events in 17,566 patients. About 9450 (53.8%) of patients who suffered HAIs were females and the average age was 41.7 ± 14.3 years (78.1% were adults and 21.9% were children). Gram-negative pathogens were 2.3-times more likely to cause HAIs compared to gram-positive bacteria (71.9% vs. 28.1%). The ranking of causative pathogens in decreasing order was: Escherichia coli (38%), Klebsiella species (15.1%), and Staphylococcus aureus (12.6%). Gram-positive isolates were mostly susceptible to linezolid (91.8%) whereas they were resistant to ampicillin (52.6%), cefoxitin (54.2%), and doxycycline (55.9%). Gram-negative isolates were mostly sensitive to tigecycline (95%) whereas they were resistant to cefotaxime (49.5%) and cefixime (59.6%). During the 5 years, there were relatively stable susceptibility patterns to all tested antimicrobials, except for cefotaxime which shown a susceptibility reduction by 41.4%, among Escherichia coli and Klebsiella species. An increase in the susceptibility of Acinetobacter and Enterobacter and Citrobacter species to all studied antimicrobials was observed except for colistin that had a slight sensitivity reduction in 2019 by 4.3% against Acinetobacter species. However, we noted reduced sensitivity of MRSA, CoNS and Enterococcus species to gentamicin; and increased resistance of MRSA to linezolid and vancomycin. Conclusion The observed increase in susceptibility of gram-positive and gram-negative bacteria to studied antimicrobials is important; however, reduced sensitivity of MRSA, CoNS and Enterococcus species to gentamicin; and increased resistance of MRSA to linezolid and vancomycin is a serious threat and calls for effective antimicrobial stewardship programs.


Author(s):  
Yali Yu ◽  
Yiyi Kong ◽  
Jing Ye ◽  
Aiguo Wang ◽  
Wenteng Si

Introduction. Prosthetic joint infection (PJI) is a serious complication after arthroplasty, which results in high morbidity, prolonged treatment and considerable healthcare expenses in the absence of accurate diagnosis. In China, microbiological data on PJIs are still scarce. Hypothesis/Gap Statement. The incidence of PJI is increasing year by year, and the proportion of drug-resistant bacteria infection is nicreasing, which brings severe challenges to the treatment of infection. Aim. This study aimed to identify the pathogens in PJIs, multi-drug resistance, and evaluate the effect of the treatment regimen in patients with PJI. Methodology. A total of 366 consecutive cases of PJI in the hip or knee joint were admitted at the Orthopedic Surgery Center in Zhengzhou, China from January 2012 to December 2018. Infections were confirmed in accordance with the Infectious Diseases Society of America and the Musculoskeletal Infection Society (MSIS) criteria. Concurrently, patient demographic data, incidence and antibiotic resistance were investigated. Statistical differences were analysed using Fisher’s exact test or chi-square test. Results. Altogether, 318 PJI cases satisfying the inclusion criteria were enrolled in this study, including 148 with hip PJIs and 170 with knee PJIs. The average age of patients with hip PJIs was lesser than that of patients with knee PJIs (56.4 vs. 68.6 years). Meanwhile, coagulase-negative staphylococcus (CNS, n=81, 25.5 %) was the predominant causative pathogen, followed by Staphylococcus aureus (n=67, 21.1 %). Methicillin-resistant Staphylococcus (MRS) was identified in 28.9 % of PJI patients. In addition, fungus accounted for 4.8 % (n=15), non-tuberculosis mycobacterium accounted for 1.6 % (n=5), polymicrobial pathogens accounted for 21.7 % (n=69), and Gram-negative bacteria accounted for 7.9 % (n=25) of the total infections. The results of antibiotic susceptibility testing showed that gentamicin and clindamycin β-lactam antibiotics were poorly susceptible to Gram-positive isolates, but they were sensitive to rifampicin, linezolid and vancomycin. While antibiotics such as amikacin and imipenem were effective against Gram-negative bacteria, there was a high resistance rate of other pathogens to gentamicin, clindamycin and some quinolone antibacterial drugs. Empirical antibiotic treatment should combine vancomycin and cephalosporin, levofloxacin or clindamycin. When the pathogen is confirmed, the treatment should be individualized. Conclusions. The prevalence of culture-negative PJIs is still very high. Gram-positive bacteria are still the main type of pathogens that cause PJIs. Attention should be paid to the high incidence of MRS, such as MRSA and MR-CNS, among PJI patients. Empirical antibiotic treatment should cover Gram-positive isolates, especially Staphylococcus .


Parasitology ◽  
2019 ◽  
Vol 147 (1) ◽  
pp. 29-38
Author(s):  
Rory Gough ◽  
Joel Barratt ◽  
Damien Stark ◽  
John Ellis

AbstractThe presence of bacterial DNA in Dientamoeba fragilis DNA extracts from culture poses a substantial challenge to sequencing the D. fragilis genome. However, elimination of bacteria from D. fragilis cultures has proven difficult in the past, presumably due to its dependence on some unknown prokaryote/s. This study explored options for removal of bacteria from D. fragilis cultures and for the generation of genome sequence data from D. fragilis. DNA was extracted from human faecal samples and xenic D. fragilis cultures. Extracts were subjected to 16S ribosomal DNA bacterial diversity profiling. Xenic D. fragilis cultures were then subject to antibiotic treatment regimens that systematically removed bacterial species depending on their membrane structure (Gram-positive or Gram-negative) and aerobic requirements. The impact of these treatments on cultures was assessed by 16S amplicon sequencing. Prior to antibiotic treatment, the cultures were dominated by Gram-negative bacteria. Addition of meropenem to cultures eliminated anaerobic Gram-negative bacteria, but it also led to protozoan death after 5 days incubation. The seeding of meropenem resistant Klebsiella pneumoniae strain KPC-2 into cultures before treatment by meropenem prevented death of D. fragilis cells beyond this 5 day period, suggesting that one or more species of Gram-negative bacteria may be an essential nutritional requirement for D. fragilis. Gram-positive cells were completely eliminated using vancomycin without affecting trophozoite growth. Finally, this study shows that genome sequencing of D. fragilis is feasible following bacterial elimination from cultures as the result of the major advances occurring in bioinformatics. We provide evidence on this fact by successfully sequencing the D. fragilis 28S large ribosomal DNA subunit gene using culture-derived DNA.


Sign in / Sign up

Export Citation Format

Share Document