scholarly journals Schwann cell plasticity regulates neuroblastic tumor cell differentiation via epidermal growth factor-like protein 8

2020 ◽  
Author(s):  
Tamara Weiss ◽  
Sabine Taschner-Mandl ◽  
Andrea Bileck ◽  
Fikret Rifatbegovic ◽  
Helena Sorger ◽  
...  

ABSTRACTThe remarkable plasticity of Schwann cells (SCs) enables the acquisition of repair-specific functions essential for peripheral nerve regeneration. We hypothesized that this plastic potential is manifested in stromal SCs found within mostly benign-behaving peripheral neuroblastic tumors. To shed light on the cellular state and impact of stromal SCs, we combined transcriptome and proteome profiling of human ganglioneuromas and neuroblastomas, rich and poor in SC-stroma, respectively, as well as human injured nerve explants, rich in repair SCs. The results revealed a nerve repair-characteristic gene expression signature of stromal SCs. In turn, primary repair SCs had a pro-differentiating and anti-proliferative effect on aggressive neuroblastoma cell lines after direct and trans-well co-culture. Within the pool of secreted stromal/repair SC factors, we identified EGFL8, a matricellular protein with so far undescribed function, to induce neuronal differentiation of neuroblastoma cell lines. This study indicates that human SCs undergo a similar adaptive response in two patho-physiologically distinct situations, peripheral nerve injury and tumor development. This response is mediated by EGFL8 and other SC derived factors, which might be of therapeutic value for neuroblastic tumors and nerve regeneration.SYNOPSISIn order to investigate the nature of stromal Schwann cells in benign peripheral neuroblastic tumors (ganglioneuromas), we compared the cellular state of stromal Schwann cells with repair-associated Schwann cells emerging in peripheral nerves after injury.Stromal Schwann cells in ganglioneuromas and repair Schwann cells in injured nerves share the expression of nerve repair-associated genes.Neuroblastoma cell lines, derived from high-risk metastatic peripheral neuroblastic tumors (neuroblastomas), respond to primary repair Schwann cells and their secretome with increased neuronal differentiation and reduced proliferation.Stromal and repair Schwann cells express the matricellular protein EGFL8, which is capable to induce neuronal differentiation of neuroblastoma cell lines in recombinant form.THE PAPER EXPLAINEDProblemIn response to peripheral nerve damage, Schwann cells (SCs) are able to transform into specialized repair cells essential for nerve cell regeneration. Our previous studies indicated that this reactive/adaptive potential of human SCs is not restricted to injured nerve cells but also emerges in response to peripheral neuroblastic tumor cells. The usually benign subtypes of peripheral neuroblastic tumors, i.e. ganglioneuroblastomas and ganglioneuromas, contain neuronal differentiating tumor cells and are pervaded by various portions of stromal SCs. Of note, the amount of stromal SCs correlates with a favorable tumor behavior and increased patient survival, whereas aggressive subtypes of peripheral neuroblastic tumors, i.e. neuroblastomas, usually lack stromal SCs and have bad prognosis. This enigma prompted us to investigate the molecular wiring and functional state of stromal SCs versus injury-associated repair SCs and how SC signals could be leveraged as therapeutics.ResultOur study revealed that the cellular state of stromal SCs in ganglioneuromas is in many aspects very similar to human repair SCs in injured nerves as both, stromal SCs and repair SCs, are equipped with distinct nerve repair-associated functions. Hence, we exposed different cell lines, derived from high-risk metastatic neuroblastomas, to primary repair SCs or their secretome. The results demonstrated that repair SCs had a pro-differentiating and anti-proliferative effect of on neuroblastoma cell lines upon direct and/or indirect contact. Searching for secreted anti-tumor factors by transcriptome and proteome analyses identified that the matricellular protein EGFL8 was highly expressed in injured nerves and ganglioneuromas. EGFL8 gene expression in peripheral neuroblastic tumors further correlated with increased patient survival. Indeed, treatment of neuroblastoma cell lines with recombinant EGFL8 promoted neuronal differentiation and present EGFL8 as a novel neuritogen.ImpactThese findings demonstrate that stromal SCs are equipped with the tools to exert nerve repair-associated functions on peripheral neuroblastic tumor cells and the tumor microenvironment. We further show that the pool of secreted stromal/repair SC molecules contains yet uncharacterized factors with a therapeutic potential for aggressive neuroblastomas. We conclude that the inherent plasticity (reactive/adaptive potential) of SCs is responsible for the development of usually benign ganglioneuroblastomas and ganglioneuromas and, thus, is of utmost interest to be exploited in future treatment approaches for aggressive neuroblastoma subtypes.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tamara Weiss ◽  
Sabine Taschner-Mandl ◽  
Lukas Janker ◽  
Andrea Bileck ◽  
Fikret Rifatbegovic ◽  
...  

AbstractAdult Schwann cells (SCs) possess an inherent plastic potential. This plasticity allows SCs to acquire repair-specific functions essential for peripheral nerve regeneration. Here, we investigate whether stromal SCs in benign-behaving peripheral neuroblastic tumors adopt a similar cellular state. We profile ganglioneuromas and neuroblastomas, rich and poor in SC stroma, respectively, and peripheral nerves after injury, rich in repair SCs. Indeed, stromal SCs in ganglioneuromas and repair SCs share the expression of nerve repair-associated genes. Neuroblastoma cells, derived from aggressive tumors, respond to primary repair-related SCs and their secretome with increased neuronal differentiation and reduced proliferation. Within the pool of secreted stromal and repair SC factors, we identify EGFL8, a matricellular protein with so far undescribed function, to act as neuritogen and to rewire cellular signaling by activating kinases involved in neurogenesis. In summary, we report that human SCs undergo a similar adaptive response in two patho-physiologically distinct situations, peripheral nerve injury and tumor development.


2017 ◽  
Vol 21 (4) ◽  
pp. 355-362 ◽  
Author(s):  
Tatjana Terzic ◽  
Martine Cordeau ◽  
Sabine Herblot ◽  
Pierre Teira ◽  
Sonia Cournoyer ◽  
...  

Neuroblastoma, a malignant neoplasm of the sympathetic nervous system, is one of the most aggressive pediatric cancers. Patients with stage IV high-risk neuroblastoma receive an intensive multimodal therapy ending with an immunotherapy based on a chimeric monoclonal antibody ch14.18. Although the use of ch14.18 monoclonal antibody has significantly increased the survival rate of high-risk neuroblastoma patients, about 33% of these patients still relapse and die from their disease. Ch14.18 targets the disialoganglioside, GD2, expressed on neuroblastic tumor (NT) cells. To better understand the causes of tumor relapse following ch14.18 immunotherapy, we have analyzed the expression of GD2 in 152 tumor samples from patients with NTs using immunohistochemical stainings. We observed GD2 expression in 146 of 152 samples (96%); however, the proportion of GD2-positive cells varied among samples. Interestingly, low percentage of GD2-positive cells before immunotherapy was associated with relapse in patients receiving ch14.18 immunotherapy. In addition, we demonstrated in vitro that the sensitivity of neuroblastoma cell lines to natural killer-mediated lysis was dependent on the proportion of GD2-positive cells, in the presence of ch14.18 antibody. In conclusion, our results indicate that the proportion of tumor cells expressing GD2 in NTs should be taken in consideration, as a prognostic marker, for high-risk neuroblastoma patients receiving anti-GD2 immunotherapy.


2010 ◽  
Vol 222 (03) ◽  
Author(s):  
S Degen ◽  
S Kuhfittig-Kulle ◽  
JH Schulte ◽  
F Westermann ◽  
A Schramm ◽  
...  

Gene ◽  
2004 ◽  
Vol 337 ◽  
pp. 91-103 ◽  
Author(s):  
Hidehiko Sugino ◽  
Tomoko Toyama ◽  
Yusuke Taguchi ◽  
Shigeyuki Esumi ◽  
Mitsuhiro Miyazaki ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6565
Author(s):  
Jennifer H. Foster ◽  
Eveline Barbieri ◽  
Linna Zhang ◽  
Kathleen A. Scorsone ◽  
Myrthala Moreno-Smith ◽  
...  

Pevonedistat is a neddylation inhibitor that blocks proteasomal degradation of cullin–RING ligase (CRL) proteins involved in the degradation of short-lived regulatory proteins, including those involved with cell-cycle regulation. We determined the sensitivity and mechanism of action of pevonedistat cytotoxicity in neuroblastoma. Pevonedistat cytotoxicity was assessed using cell viability assays and apoptosis. We examined mechanisms of action using flow cytometry, bromodeoxyuridine (BrDU) and immunoblots. Orthotopic mouse xenografts of human neuroblastoma were generated to assess in vivo anti-tumor activity. Neuroblastoma cell lines were very sensitive to pevonedistat (IC50 136–400 nM). The mechanism of pevonedistat cytotoxicity depended on p53 status. Neuroblastoma cells with mutant (p53MUT) or reduced levels of wild-type p53 (p53si-p53) underwent G2-M cell-cycle arrest with rereplication, whereas p53 wild-type (p53WT) cell lines underwent G0-G1 cell-cycle arrest and apoptosis. In orthotopic neuroblastoma models, pevonedistat decreased tumor weight independent of p53 status. Control mice had an average tumor weight of 1.6 mg + 0.8 mg versus 0.5 mg + 0.4 mg (p < 0.05) in mice treated with pevonedistat. The mechanism of action of pevonedistat in neuroblastoma cell lines in vitro appears p53 dependent. However, in vivo studies using mouse neuroblastoma orthotopic models showed a significant decrease in tumor weight following pevonedistat treatment independent of the p53 status. Novel chemotherapy agents, such as the NEDD8-activating enzyme (NAE) inhibitor pevonedistat, deserve further study in the treatment of neuroblastoma.


PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e48654 ◽  
Author(s):  
Giovanna Bianchi ◽  
Fabio Morandi ◽  
Michele Cilli ◽  
Antonio Daga ◽  
Chiara Bocelli-Tyndall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document