scholarly journals Schwann cell plasticity regulates neuroblastic tumor cell differentiation via epidermal growth factor-like protein 8

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tamara Weiss ◽  
Sabine Taschner-Mandl ◽  
Lukas Janker ◽  
Andrea Bileck ◽  
Fikret Rifatbegovic ◽  
...  

AbstractAdult Schwann cells (SCs) possess an inherent plastic potential. This plasticity allows SCs to acquire repair-specific functions essential for peripheral nerve regeneration. Here, we investigate whether stromal SCs in benign-behaving peripheral neuroblastic tumors adopt a similar cellular state. We profile ganglioneuromas and neuroblastomas, rich and poor in SC stroma, respectively, and peripheral nerves after injury, rich in repair SCs. Indeed, stromal SCs in ganglioneuromas and repair SCs share the expression of nerve repair-associated genes. Neuroblastoma cells, derived from aggressive tumors, respond to primary repair-related SCs and their secretome with increased neuronal differentiation and reduced proliferation. Within the pool of secreted stromal and repair SC factors, we identify EGFL8, a matricellular protein with so far undescribed function, to act as neuritogen and to rewire cellular signaling by activating kinases involved in neurogenesis. In summary, we report that human SCs undergo a similar adaptive response in two patho-physiologically distinct situations, peripheral nerve injury and tumor development.

2020 ◽  
Author(s):  
Tamara Weiss ◽  
Sabine Taschner-Mandl ◽  
Andrea Bileck ◽  
Fikret Rifatbegovic ◽  
Helena Sorger ◽  
...  

ABSTRACTThe remarkable plasticity of Schwann cells (SCs) enables the acquisition of repair-specific functions essential for peripheral nerve regeneration. We hypothesized that this plastic potential is manifested in stromal SCs found within mostly benign-behaving peripheral neuroblastic tumors. To shed light on the cellular state and impact of stromal SCs, we combined transcriptome and proteome profiling of human ganglioneuromas and neuroblastomas, rich and poor in SC-stroma, respectively, as well as human injured nerve explants, rich in repair SCs. The results revealed a nerve repair-characteristic gene expression signature of stromal SCs. In turn, primary repair SCs had a pro-differentiating and anti-proliferative effect on aggressive neuroblastoma cell lines after direct and trans-well co-culture. Within the pool of secreted stromal/repair SC factors, we identified EGFL8, a matricellular protein with so far undescribed function, to induce neuronal differentiation of neuroblastoma cell lines. This study indicates that human SCs undergo a similar adaptive response in two patho-physiologically distinct situations, peripheral nerve injury and tumor development. This response is mediated by EGFL8 and other SC derived factors, which might be of therapeutic value for neuroblastic tumors and nerve regeneration.SYNOPSISIn order to investigate the nature of stromal Schwann cells in benign peripheral neuroblastic tumors (ganglioneuromas), we compared the cellular state of stromal Schwann cells with repair-associated Schwann cells emerging in peripheral nerves after injury.Stromal Schwann cells in ganglioneuromas and repair Schwann cells in injured nerves share the expression of nerve repair-associated genes.Neuroblastoma cell lines, derived from high-risk metastatic peripheral neuroblastic tumors (neuroblastomas), respond to primary repair Schwann cells and their secretome with increased neuronal differentiation and reduced proliferation.Stromal and repair Schwann cells express the matricellular protein EGFL8, which is capable to induce neuronal differentiation of neuroblastoma cell lines in recombinant form.THE PAPER EXPLAINEDProblemIn response to peripheral nerve damage, Schwann cells (SCs) are able to transform into specialized repair cells essential for nerve cell regeneration. Our previous studies indicated that this reactive/adaptive potential of human SCs is not restricted to injured nerve cells but also emerges in response to peripheral neuroblastic tumor cells. The usually benign subtypes of peripheral neuroblastic tumors, i.e. ganglioneuroblastomas and ganglioneuromas, contain neuronal differentiating tumor cells and are pervaded by various portions of stromal SCs. Of note, the amount of stromal SCs correlates with a favorable tumor behavior and increased patient survival, whereas aggressive subtypes of peripheral neuroblastic tumors, i.e. neuroblastomas, usually lack stromal SCs and have bad prognosis. This enigma prompted us to investigate the molecular wiring and functional state of stromal SCs versus injury-associated repair SCs and how SC signals could be leveraged as therapeutics.ResultOur study revealed that the cellular state of stromal SCs in ganglioneuromas is in many aspects very similar to human repair SCs in injured nerves as both, stromal SCs and repair SCs, are equipped with distinct nerve repair-associated functions. Hence, we exposed different cell lines, derived from high-risk metastatic neuroblastomas, to primary repair SCs or their secretome. The results demonstrated that repair SCs had a pro-differentiating and anti-proliferative effect of on neuroblastoma cell lines upon direct and/or indirect contact. Searching for secreted anti-tumor factors by transcriptome and proteome analyses identified that the matricellular protein EGFL8 was highly expressed in injured nerves and ganglioneuromas. EGFL8 gene expression in peripheral neuroblastic tumors further correlated with increased patient survival. Indeed, treatment of neuroblastoma cell lines with recombinant EGFL8 promoted neuronal differentiation and present EGFL8 as a novel neuritogen.ImpactThese findings demonstrate that stromal SCs are equipped with the tools to exert nerve repair-associated functions on peripheral neuroblastic tumor cells and the tumor microenvironment. We further show that the pool of secreted stromal/repair SC molecules contains yet uncharacterized factors with a therapeutic potential for aggressive neuroblastomas. We conclude that the inherent plasticity (reactive/adaptive potential) of SCs is responsible for the development of usually benign ganglioneuroblastomas and ganglioneuromas and, thus, is of utmost interest to be exploited in future treatment approaches for aggressive neuroblastoma subtypes.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Feixiang Chen ◽  
Weihuang Liu ◽  
Qiang Zhang ◽  
Ping Wu ◽  
Ao Xiao ◽  
...  

AbstractPeripheral nerve injury is a serious health problem and repairing long nerve deficits remains a clinical challenge nowadays. Nerve guidance conduit (NGC) serves as the most promising alternative therapy strategy to autografts but its repairing efficiency needs improvement. In this study, we investigated whether modulating the immune microenvironment by Interleukin-17F (IL-17F) could promote NGC mediated peripheral nerve repair. Chitosan conduits were used to bridge sciatic nerve defect in IL-17F knockout mice and wild-type mice with autografts as controls. Our data revealed that IL-17F knockout mice had improved functional recovery and axonal regeneration of sciatic nerve bridged by chitosan conduits comparing to the wild-type mice. Notably, IL-17F knockout mice had enhanced anti-inflammatory macrophages in the NGC repairing microenvironment. In vitro data revealed that IL-17F knockout peritoneal and bone marrow derived macrophages had increased anti-inflammatory markers after treatment with the extracts from chitosan conduits, while higher pro-inflammatory markers were detected in the Raw264.7 macrophage cell line, wild-type peritoneal and bone marrow derived macrophages after the same treatment. The biased anti-inflammatory phenotype of macrophages by IL-17F knockout probably contributed to the improved chitosan conduit guided sciatic nerve regeneration. Additionally, IL-17F could enhance pro-inflammatory factors production in Raw264.7 cells and wild-type peritoneal macrophages. Altogether, IL-17F may partially mediate chitosan conduit induced pro-inflammatory polarization of macrophages during nerve repair. These results not only revealed a role of IL-17F in macrophage function, but also provided a unique and promising target, IL-17F, to modulate the microenvironment and enhance the peripheral nerve regeneration.


2021 ◽  
Author(s):  
Qianqian Chen ◽  
Qianyan Liu ◽  
Pan Wang ◽  
Tianmei Qian ◽  
Xinghui Wang ◽  
...  

Abstract Proper supporting factor can possess the ability to enhance neuron regeneration, for instance, neurotrophic effects especially nerve growth factor (NGF). However, the in vivo applications of NGF are largely limited by its intrinsic disadvantages. Considering that let-7 targets and regulates NGF, and let-7 is also the core and harbor regulators in peripheral nerve repair and regeneration, we evaluated the potential application in clinical. We firstly screened the let-7a as the most ideal let-7 family molecular by gene expression analysis and functional approach. We further evaluated the in vivo safety, the cell permeability of 3 main cells in regeneration micro-environment, and the morphological and functional indicators. Our study provides an essential basis for in vivo application of let-7 and pictured a vision for the clinical translation of miRNA as a prospective alternative for regenerative medicine.


2018 ◽  
Vol 6 (5) ◽  
pp. 1059-1075 ◽  
Author(s):  
C. R. Carvalho ◽  
S. Wrobel ◽  
C. Meyer ◽  
C. Brandenberger ◽  
I. F. Cengiz ◽  
...  

This experimental work considers the innovative use of the biomaterial Gellan Gum (GG) as a luminal filler for nerve guidance channels.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
D. Grinsell ◽  
C. P. Keating

Unlike other tissues in the body, peripheral nerve regeneration is slow and usually incomplete. Less than half of patients who undergo nerve repair after injury regain good to excellent motor or sensory function and current surgical techniques are similar to those described by Sunderland more than 60 years ago. Our increasing knowledge about nerve physiology and regeneration far outweighs our surgical abilities to reconstruct damaged nerves and successfully regenerate motor and sensory function. It is technically possible to reconstruct nerves at the fascicular level but not at the level of individual axons. Recent surgical options including nerve transfers demonstrate promise in improving outcomes for proximal nerve injuries and experimental molecular and bioengineering strategies are being developed to overcome biological roadblocks limiting patient recovery.


2003 ◽  
Vol 98 (2) ◽  
pp. 371-377 ◽  
Author(s):  
Güzin Yeşim Özgenel ◽  
Gülaydan Filiz

Object. Peripheral nerve repair surgery is still replete with challenges. Despite technical improvements in microsurgery, classic methods of nerve repair have failed to provide satisfactory results. The purpose of this study was to investigate the effects of amniotic fluid from humans on peripheral nerve scarring and regeneration in rats. Methods. Forty adult Sprague—Dawley rats were used in this study. After the right sciatic nerve in each rat was transected and repaired using an epineural suture procedure, the nerves were divided into two groups according to the solution applied around the repair site: experimental group, 0.3 ml human amniotic fluid (HAF); and control group, 0.3 ml saline. Macroscopic and histological evaluations of peripheral nerve scarring were performed 4 weeks postsurgery. Nerves treated with HAF demonstrated a significant reduction in the amount of scar tissue surrounding the repair site (p < 0.05). No evidence of a reaction against HAF was noted. Functional nerve regeneration was measured once every 2 weeks by using a sciatic function index until 12 weeks postsurgery. Functional recovery in nerves treated with amniotic fluid occurred significantly faster than that in nerves treated with saline (p < 0.05). Peripheral nerve regeneration was evaluated histomorphologically at 12 weeks postsurgery. Nerves treated with amniotic fluid showed significant improvement with respect to the indices of fiber maturation (p < 0.05). Conclusions. Preliminary data show that HAF enhances peripheral nerve regeneration. The preventive effect of HAF on epineural scarring and the rich content of neurotrophic and neurite-promoting factors possibly contribute to this result.


2018 ◽  
Vol 29 (4) ◽  
pp. 369-376 ◽  
Author(s):  
Albert M. Chung

Abstract Calcitonin gene-related peptide (CGRP) is a neuropeptide that has an important anti-inflammatory role in the immune system. Research has shown that CGRP is an integral part in peripheral nerve regeneration by (1) suppressing tumor necrosis factor-α, (2) forming an initial nerve bridge by increasing fibroblast motility and extracellular matrix synthesis, (3) vascularizing the spinal cord injury site, and (4) inducing Schwann cell (SC) proliferation. In this treatise, the following hypotheses will be explored: (1) CGRP is induced by c-Jun to regulate SC dedifferentiation, (2) CGRP promotes the chemotaxic migration of SCs along the nerve bridge, and (3) CGRP induces myelinophagy by activating various signaling pathways, such as p38 mitogen-activated protein kinase and Raf/extracellular signal-regulated kinase. These processes provide a framework for understanding the role of CGRP in peripheral nerve regeneration, which may be important in developing better strategies for nerve repair and gaining further insight into demyelinating diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Rui Li ◽  
Xuetao Tao ◽  
Minghong Huang ◽  
Yan Peng ◽  
Jiahong Liang ◽  
...  

Peripheral nerve injury (PNI), resulting in the impairment of myelin sheaths and axons, seriously affects the transmission of sensory or motor nerves. Growth factors (GFs) provide a biological microenvironment for supporting nerve regrowth and have become a promising alternative for repairing PNI. As one number of intracellular growth factor family, fibroblast growth factor 13 (FGF13) was regard as a microtubule-stabilizing protein for regulating cytoskeletal plasticity and neuronal polarization. However, the therapeutic efficiency and underlying mechanism of FGF13 for treating PNI remained unknown. Here, the application of lentivirus that overexpressed FGF13 was delivered directly to the lesion site of transverse sciatic nerve for promoting peripheral nerve regeneration. Through behavioral analysis and histological and ultrastructure examinations, we found that FGF13 not only facilitated motor and sense functional recovery but also enhanced axon elongation and remyelination. Furthermore, pretreatment with FGF13 also promoted Schwann cell (SC) viability and upregulated the expression cellular microtubule-associated proteins in vitro PNI model. These data indicated FGF13 therapeutic effect was closely related to maintain cellular microtubule stability. Thus, this work provides the evident that FGF13-medicated microtubule stability is necessary for promoting peripheral nerve repair following PNI, highlighting the potential therapeutic value of FGF13 on ameliorating injured nerve recovery.


Sign in / Sign up

Export Citation Format

Share Document