scholarly journals Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics

Author(s):  
Gabriel G. Katul ◽  
Assaad Mrad ◽  
Sara Bonetti ◽  
Gabriele Manoli ◽  
Anthony J. Parolari

AbstractThe SIR (‘susceptible-infectious-recovered’) formulation is used to uncover the generic spread mechanisms observed by COVID-19 dynamics globally, especially in the early phases of infectious spread. During this early period, potential controls were not effectively put in place or enforced in many countries. Hence, the early phases of COVID-19 spread in countries where controls were weak offer a unique perspective on the ensemble-behavior of COVID-19 basic reproduction number Ro. The work here shows that there is global convergence (i.e. across many nations) to an uncontrolled Ro = 4.5 that describes the early time spread of COVID-19. This value is in agreement with independent estimates from other sources reviewed here and adds to the growing consensus that the early estimate of Ro = 2.2 adopted by the World Health Organization is low. A reconciliation between power-law and exponential growth predictions is also featured within the confines of the SIR formulation. Implications for evaluating potential control strategies from this uncontrolled Ro are briefly discussed in the context of the maximum possible infected fraction of the population (needed for assessing health care capacity) and mortality (especially in the USA given diverging projections). Model results indicate that if intervention measures still result in Ro> 2.7 within 49 days after first infection, intervention is unlikely to be effective in general for COVID-19. Current optimistic projections place mortality figures in the USA in the range of 100,000 fatalities. For fatalities to be confined to 100,000 requires a reduction in Ro from 4.5 to 2.7 within 17 days of first infection assuming a mortality rate of 3.4%.

PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0239800 ◽  
Author(s):  
Gabriel G. Katul ◽  
Assaad Mrad ◽  
Sara Bonetti ◽  
Gabriele Manoli ◽  
Anthony J. Parolari

2021 ◽  
Vol 9 (1) ◽  
pp. 198-212
Author(s):  
Cheryl Q. Mentuda

Abstract Dengue is the most common mosquito-borne viral infection transmitted disease. It is due to the four types of viruses (DENV-1, DENV-2, DENV-3, DENV-4), which transmit through the bite of infected Aedes aegypti and Aedes albopictus female mosquitoes during the daytime. The first globally commercialized vaccine is Dengvaxia, also known as the CYD-TDV vaccine, manufactured by Sanofi Pasteur. This paper presents a Ross-type epidemic model to describe the vaccine interaction between humans and mosquitoes using an entomological mosquito growth population and constant human population. After establishing the basic reproduction number ℛ0, we present three control strategies: vaccination, vector control, and the combination of vaccination and vector control. We use Pontryagin’s minimum principle to characterize optimal control and apply numerical simulations to determine which strategies best suit each compartment. Results show that vector control requires shorter time applications in minimizing mosquito populations. Whereas vaccinating the primary susceptible human population requires a shorter time compared to the secondary susceptible human.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Yusuf Abdu Misau ◽  
Nanshin Nansak ◽  
Aliyu Maigoro ◽  
Sani Malami ◽  
Dominic Mogere ◽  
...  

The novel SARS-COV-2 has since been declared a pandemic by the World Health Organization (WHO). The virus has spread from Wuhan city in China in December 2019 to no fewer than 200 countries as at June 2020 and still counting. Nigeria is currently experiencing a rapid spread of the virus amidst weak health system and more than 80% of population leaving on less than 1USD per day. To help understand the behavior of the virus in resource limited settings, we modelled the outbreak of COVID-19 and effects of control strategies in Bauchi state at north-eastern Nigeria. Using the real data of Bauchi state COVID-19 project, this research work extends the epidemic SEIR model by introducing new parameters based on the transmission dynamics of the novel COVID-19 pandemic and preventive measures. The total population of Bauchi State at the time of the study, given by is compartmentalized into five (5) different compartments as follows: Susceptible (S), Exposed (E), Infectious (I), Quarantined (Q) and Recovered (R). The new model is SEIQR. N = S → E → I → Q → R Data was collected by accessing Bauchi state electronic database of COVID-19 project to derive all the model parameters, while analysis and model building was done using Maple software. At the time of this study, it was found that the reproduction number R, for COVID-19 in Bauchi state, is 2.6 × 10-5. The reproduction number R decreased due to the application of control measures. The compartmental SEIRQ model in this study, which is a deterministic system of linear differential equations, has a continuum of disease-free equilibria, which is rigorously shown to be locallyasymptotically stable as the epidemiological threshold, known as the control reproduction number R= 0.0000026 is less than unity. The implication of this study is that the COVID-19 pandemic can be effectively controlled in Bauchi, since is R<1. Contact tracing and isolation must be increased as the models shows, the rise in infected class is a sign of high vulnerability of the population. Unless control measures are stepped up, despite high rate of recovery as shown by this study, infection rate will keep increasing as currently there is a no vaccine for COVID-19.


2020 ◽  
Vol 28 (02) ◽  
pp. 351-376 ◽  
Author(s):  
MUHAMMAD ALTAF KHAN ◽  
SYED AZHAR ALI SHAH ◽  
SAIF ULLAH ◽  
KAZEEM OARE OKOSUN ◽  
MUHAMMAD FAROOQ

Hepatitis B infection is a serious health issue and a major cause of deaths worldwide. This infection can be overcome by adopting proper treatment and control strategies. In this paper, we develop and use a mathematical model to explore the effect of treatment on the dynamics of hepatitis B infection. First, we formulate and use a model without control variables to calculate the basic reproduction number and to investigate basic properties of the model such as the existence and stability of equilibria. In the absence of control measures, we prove that the disease free equilibrium is locally asymptotically stable when the basic reproduction number is less than unity. Also, using persistent theorem, it is shown that the infection is uniformly persistent, whenever the basic reproduction number is greater than unity. Using optimal control theory, we incorporate into the model three time-dependent control variables and investigate the conditions required to curtail the spread of the disease. Finally, to illustrate the effectiveness of each of the control strategies on disease control and eradication, we perform numerical simulations. Based on the numerical results, we found that the first two strategies (treatment and isolation strategy) and (vaccination and isolation strategy) are not very effective as a long term control or eradication strategy for HBV. Hence, we recommend that in order to effectively control the disease, all the control measures (isolation, vaccination and treatment) must be implemented at the same time.


2018 ◽  
Vol 5 (3) ◽  
pp. 170602 ◽  
Author(s):  
S. Towers ◽  
J. Chen ◽  
C. Cruz ◽  
J. Melendez ◽  
J. Rodriguez ◽  
...  

Norovirus is a common cause of outbreaks of acute gastroenteritis in health- and child-care settings, with serial outbreaks also frequently observed aboard cruise ships. The relative contributions of environmental and direct person-to-person transmission of norovirus have hitherto not been quantified. We employ a novel mathematical model of norovirus transmission, and fit the model to daily incidence data from a major norovirus outbreak on a cruise ship, and examine the relative efficacy of potential control strategies aimed at reducing environmental and/or direct transmission. The reproduction number for environmental and direct transmission combined is R 0 tot = 7.2 [6.1,9.5], and of environmental transmission alone is R 0 environ = 1.6 [0.9,2.6]. Direct transmission is overwhelmingly due to passenger-to-passenger contacts, but crew can act as a reservoir of infection from cruise to cruise. This is the first quantification of the relative roles of environmental and direct transmission of norovirus. While environmental transmission has the potential to maintain a sustained series of outbreaks aboard a cruise ship in the absence of strict sanitation practices, direct transmission dominates. We find that intensive promotion of good hand washing practices may prevent outbreaks. Isolation of ill passengers and cleaning are beneficial, but appear to be less efficacious at outbreak control.


2020 ◽  
Vol 15 ◽  
pp. 34 ◽  
Author(s):  
Jayrold P. Arcede ◽  
Randy L. Caga-anan ◽  
Cheryl Q. Mentuda ◽  
Youcef Mammeri

A mathematical model was developed describing the dynamic of the COVID-19 virus over a population considering that the infected can either be symptomatic or not. The model was calibrated using data on the confirmed cases and death from several countries like France, Philippines, Italy, Spain, United Kingdom, China, and the USA. First, we derived the basic reproduction number, R0, and estimated the effective reproduction Reff for each country. Second, we were interested in the merits of interventions, either by distancing or by treatment. Results revealed that total and partial containment is effective in reducing the transmission. However, its duration may be long to eradicate the disease (104 days for France). By setting the end of containment as the day when hospital capacity is reached, numerical simulations showed that the duration can be reduced (up to only 39 days for France if the capacity is 1000 patients). Further, results pointed out that the effective reproduction number remains large after containment. Therefore, testing and isolation are necessary to stop the disease.


2020 ◽  
Author(s):  
Seth Blumberg ◽  
Anna Borlase ◽  
Joaquin M Prada ◽  
Anthony W Solomon ◽  
Paul Emerson ◽  
...  

AbstractBackgroundProgress towards elimination of trachoma as a public health problem has been substantial, but the COVID-19 pandemic has disrupted community-based control efforts.MethodsWe use a susceptible-infected model to estimate the impact of delayed distribution of azithromycin treatment on the prevalence of active trachoma.ResultsWe identify three distinct scenarios for geographic districts depending on whether the basic reproduction number and the treatment-associated reproduction number are above or below a value of one. We find that when the basic reproduction number is below one, no significant delays in disease control will be caused. However, when the basic reproduction number is above one, significant delays can occur. In most districts a year of COVID-related delay can be mitigated by a single extra round of mass drug administration. However, supercritical districts require a new paradigm of infection control because the current strategies will not eliminate disease.ConclusionIf the pandemic can motivate judicious, community-specific implementation of control strategies, global elimination of trachoma as a public health problem could be accelerated.


2007 ◽  
Vol 135 (7) ◽  
pp. 1133-1144 ◽  
Author(s):  
I. M. HALL ◽  
J. R. EGAN ◽  
I. BARRASS ◽  
R. GANI ◽  
S. LEACH

SUMMARYTo determine the potential benefits of regionally targeted mass vaccination as an adjunct to other smallpox control strategies we employed a spatial metapopulation patch model based on the administrative districts of Great Britain. We counted deaths due to smallpox and to vaccination to identify strategies that minimized total deaths. Results confirm that case isolation, and the tracing, vaccination and observation of case contacts can be optimal for control but only for optimistic assumptions concerning, for example, the basic reproduction number for smallpox (R0=3) and smaller numbers of index cases (∼10). For a wider range of scenarios, including larger numbers of index cases and higher reproduction numbers, the addition of mass vaccination targeted only to infected districts provided an appreciable benefit (5–80% fewer deaths depending on where the outbreak started with a trigger value of 1–10 isolated symptomatic individuals within a district).


Author(s):  
Amjad S. Shaikh ◽  
Vikas S. Jadhav ◽  
Munir G. Timol ◽  
Kottakkaran S. Nisar ◽  
I. Khan

Fractional differential mathematical model unfolding the dynamics of the COVID-19 pandemic in India is presented and explored in this paper. The purpose of this study is to estimate the future outbreak of disease and potential control strategies using mathematical models in India as a whole country as well as in some of the states of the country. This model is calibrated based on reported cases of infections over the month of April 2020 in India. We have used iterative fractional complex transform method to find approximate solutions of the model having modified Riemann Liouville fractional differential operator. We have also carried out a comparative analysis between actual and estimated cumulative cases graphically, moreover, most sensitive parameters for basic reproduction number$(R_0)$ are computed and their effect on transmission dynamics of COVID-19 pandemic is investigated in detail.


2019 ◽  
Vol 12 (02) ◽  
pp. 1950012 ◽  
Author(s):  
C. Balde ◽  
M. Lam ◽  
A. Bah ◽  
S. Bowong ◽  
J. J. Tewa

A mathematical model for the dynamical transmission of polio is considered, with the aim of investigating the impact of environment contamination. The model captures two infection pathways through both direct human-to-human transmission and indirect human-to-environment-to-human transmission by incorporating the environment as a transition and/or reservoir of viruses. We derive the basic reproduction number [Formula: see text]. We show that the disease free equilibrium is globally asymptotically stable (GAS) if [Formula: see text], while if [Formula: see text], there exists a unique endemic equilibrium which is locally asymptotically stable (LAS). Similar results hold for environmental contamination free sub-model (without the incorporation of the indirect transmission). At the endemic level, we show that the number of infected individuals for the model with the environmental-related contagion is greater than the corresponding number for the environmental contamination free sub-model. In conjunction with the inequality [Formula: see text], where [Formula: see text] is the basic reproduction number for the environmental contamination free sub-model, our finding suggests that the contaminated environment plays a detrimental role on the transmission dynamics of polio disease by increasing the endemic level and the severity of the outbreak. Therefore, it is natural to implement control strategies to reduce the severity of the disease by providing adequate hygienic living conditions, educate populations at risk to follow rigorously those basic hygienic rules in order to avoid adequate contacts with suspected contaminated objects. Further, we perform numerical simulations to support the theory.


Sign in / Sign up

Export Citation Format

Share Document