scholarly journals Exome sequencing identifies ARID2 as a novel tumor suppressor in early-onset sporadic rectal cancer

2020 ◽  
Author(s):  
Pratyusha Bala ◽  
Anurag Kumar Singh ◽  
Padmavathi Kavadipula ◽  
Viswakalyan Kotapalli ◽  
Radhakrishnan Sabarinathan ◽  
...  

AbstractEarly-onset sporadic rectal cancer (EOSRC) is a unique and predominant colorectal cancer (CRC) subtype in India. In order to understand the tumorigenic process in EOSRC, we performed whole exome sequencing of 47 microsatellite stable EOSRC samples. Signature 1 was the predominant mutational signature in EOSRC, as previously shown in other CRC exome studies. More importantly, we identified TP53, KRAS, APC, PIK3R1 and SMAD4 as significantly mutated (q<0.1) and ARID1A and ARID2 as near-significantly mutated (restricted hypothesis testing; q<0.1) candidate drivers. Unlike the other candidates, the tumorigenic potential of ARID2, encoding a component of the SWI/SNF chromatin remodeling complex, is largely unexplored in CRC. shRNA mediated ARID2 knockdown performed in two different CRC cell lines resulted in significant alterations in transcript levels of cancer-related target genes. More importantly, ARID2 knockdown promoted several tumorigenic features including cell viability, proliferation, ability to override contact inhibition of growth, and migration besides significantly increasing tumor formation ability in nude mice. The observed gain in tumorigenic features were rescued upon ectopic expression of ARID2. Analyses of the TCGA CRC dataset revealed poorer survival in patients with ARID2 alterations. We therefore propose ARID2 as a novel tumor suppressor in CRC.

Oncogene ◽  
2020 ◽  
Author(s):  
Pratyusha Bala ◽  
Anurag Kumar Singh ◽  
Padmavathi Kavadipula ◽  
Viswakalyan Kotapalli ◽  
Radhakrishnan Sabarinathan ◽  
...  

2017 ◽  
Vol 1 (Special Issue) ◽  
pp. 58-58
Author(s):  
Pratyusha Bala ◽  
Ravi Gupta ◽  
Murali D. Bashyam

2004 ◽  
Vol 22 (24) ◽  
pp. 4991-5004 ◽  
Author(s):  
William Y. Kim ◽  
William G. Kaelin

Germline inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene causes the von Hippel-Lindau hereditary cancer syndrome, and somatic mutations of this gene have been linked to the development of sporadic hemangioblastomas and clear-cell renal carcinomas. The VHL tumor suppressor protein (pVHL), through its oxygen-dependent polyubiquitylation of hypoxia-inducible factor (HIF), plays a central role in the mammalian oxygen-sensing pathway. This interaction between pVHL and HIF is governed by post-translational prolyl hydroxylation of HIF in the presence of oxygen by a conserved family of Egl-nine (EGLN) enzymes. In the absence of pVHL, HIF becomes stabilized and is free to induce the expression of its target genes, many of which are important in regulating angiogenesis, cell growth, or cell survival. Moreover, preliminary data indicate that HIF plays a critical role in pVHL-defective tumor formation, raising the possibility that drugs directed against HIF or its downstream targets (such as vascular endothelial growth factor) might one day play a role in the treatment of hemangioblastoma and renal cell carcinoma. On the other hand, clear genotype-phenotype correlations are emerging in VHL disease and can be rationalized if pVHL has functions separate from its control of HIF.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3593
Author(s):  
Qun Zhang ◽  
Yihong Zhang ◽  
Jie Zhang ◽  
Dan Zhang ◽  
Mengying Li ◽  
...  

p66α is a GATA zinc finger domain-containing transcription factor that has been shown to be essential for gene silencing by participating in the NuRD complex. Several studies have suggested that p66α is a risk gene for a wide spectrum of diseases such as diabetes, schizophrenia, and breast cancer; however, its biological role has not been defined. Here, we report that p66α functions as a tumor suppressor to inhibit breast cancer cell growth and migration, evidenced by the fact that the depletion of p66α results in accelerated tumor growth and migration of breast cancer cells. Mechanistically, immunoprecipitation assays identify p66α as a p53-interacting protein that binds the DNA-binding domain of p53 molecule predominantly via its CR2 domain. Depletion of p66α in multiple breast cells results in decreased expression of p53 target genes, while over-expression of p66α results in increased expression of these target genes. Moreover, p66α promotes the transactivity of p53 by enhancing p53 binding at target promoters. Together, these findings demonstrate that p66α is a tumor suppressor by functioning as a co-activator of p53.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1967-1967
Author(s):  
Kerstin M Kampa ◽  
Sandra Mueller ◽  
Michael Bonin ◽  
Marcus M Schittenhelm ◽  
Charles D Lopez

Abstract Abstract 1967 Poster Board I-990 ASPP2 is a member of a family of p53 binding proteins that enhance apoptosis, in part through selective stimulation of p53 transactivation of pro-apoptotic target genes. Low ASPP2 expression is found in many human cancers and has been associated with poor clinical outcome in patients with aggressive lymphoma. Using an ASPP2+/- mouse model, we have previously demonstrated that ASPP2 is a haploinsufficient tumor suppressor and that reduced ASPP2 expression results in attenuated damage-response thresholds (Kampa et al., PNAS 2009). While ASPP2-/- mice are not viable, ASPP2+/- mice have an increased incidence of -irradiation-induced tumors compared to ASPP2+/+ mice.γspontaneous and ASPP2+/- mice develop high-grade thymic T-cell lymphomas after -irradiation. Moreover, primary ASPP2+/- thymocytes have an attenuatedγ -irradiation compared to ASPP2+/+ thymocytes.γapoptotic response after To explore the mechanisms of how attenuated ASPP2 expression could increase thymic lymphomagenesis and attenuate apoptosis, we performed global gene expression profiling on unirradiated, and 5 Gy irradiated ASPP2+/+ and ASPP2+/- thymocytes using an Affymetrix Mouse GeneChip® Array. We found significant differences in gene expression between ASPP2+/+ and ASPP2+/- thymocytes, in both unirradiated and irradiated sets. Using Ingenuity Pathway Analysis software, we found that amongst the highest scoring pathways displaying differences were those associated with cell growth, tumor formation, hematologic malignancies, immune response, cell death and cell cycle regulation. We additionally studied global phosphorylation patterns using 2-dimensional gel electrophoresis, fluorescent phosphoprotein dye Pro-Q Diamond staining, and liquid chromatography tandem mass spectrometry to determine the posttranscriptional mechanisms mediated by attenuated ASPP2 expression. Analysis of the phosphoproteome of ASPP2+/+ and ASPP2+/- mouse embryonic fibroblasts (with and without irradiation) revealed differences in the phosphorylation status of 108 peptides/proteins including those involved in regulating cell cycle checkpoints, T-cell receptor signaling, cell stress response, DNA repair mechanisms, cell growth, translation and transcription. Differential expression of the identified genes and proteins was verified by PCR and Western Blot. Thus, reduced ASPP2 expression affects global transcriptional as well as post-transcriptional networks intimately involved in the development of hematologic disorders–suggesting that ASPP2 function is by far more complex than solely enhancing the expression of pro-apoptotic p53 target genes. Given that ASPP2 is a bona fide tumor suppressor, reduced ASPP2 levels result in global dysregulation of pathways engaged in tumor suppression networks and the cellular damage response, which may ultimately promote genomic instability and tumor formation. Our findings provide insights into the role of ASPP2 in lymphomagenesis and reveal possible new targets for cancer therapy. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Author(s):  
Ratheesh Raman ◽  
Viswakalyan Kotapalli ◽  
Raju SR Adduri ◽  
Vasantha Kumar Bhaskara ◽  
Swarnalata Gowrishankar ◽  
...  

2020 ◽  
Vol 19 ◽  
pp. 153303382093413
Author(s):  
Hongbo Sun ◽  
Zhifu Zhang ◽  
Wei Luo ◽  
Junmin Liu ◽  
Ye Lou ◽  
...  

Background: T-cell acute lymphoblastic leukemia is a hematologic malignancy characterized by T-cell proliferation, and in many cases, the ectopic expression of the oncogenic transcription factor T-cell acute lymphocytic leukemia protein 1 (TAL1). MicroRNA-7 has been shown to play a critical role in proliferation, migration, and treatment sensitivity in a diverse array of cancers. In this study, we sought to establish a novel link between microRNA-7 and T-cell acute lymphoblastic leukemia oncogenesis. Material and Method: To do so, we characterized gene expression of microRNA-7 as well as TAL1 in both T-cell acute lymphoblastic leukemia patient-derived tissue and cell lines, as well as performing functional luciferase assays to assess microRNA-7 binding to the TAL1 3′-untranslated region. We also performed growth, apoptosis, and migration experiments using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide, Annexin V, and transwell assays in the context of microRNA-7 overexpression. Results: We found that microRNA-7 expression is attenuated and inversely correlated with TAL1 expression in TAL1 + T-cell acute lymphoblastic leukemia cells. Additionally, microRNA-7 directly targets and suppresses TAL1 levels. Finally, microRNA-7 overexpression reduces growth, motility, and migration while inducing apoptosis in T-cell acute lymphoblastic leukemia cells, phenotypes that can be rescued by concomitant overexpression of TAL1. Conclusions: These results indicate that microRNA-7 functions as a potent tumor suppressor by inhibiting the oncogene TAL1 and suggest microRNA-7 could function as a prognostic biomarker and possible therapeutic in the clinical management of T-cell acute lymphoblastic leukemia.


Blood ◽  
2009 ◽  
Vol 113 (22) ◽  
pp. 5558-5567 ◽  
Author(s):  
Jianhua Yu ◽  
Maxim Ershler ◽  
Li Yu ◽  
Min Wei ◽  
Björn Hackanson ◽  
...  

Aberrant methylation of tumor suppressor genes can lead to their silencing in many cancers. TSC-22 is a gene silenced in several solid tumors, but its function and the mechanism(s) responsible for its silencing are largely unknown. Here we demonstrate that the TSC-22 promoter is methylated in primary mouse T or natural killer (NK) large granular lymphocyte (LGL) leukemia and this is associated with down-regulation or silencing of TSC-22 expression. The TSC-22 deregulation was reversed in vivo by a 5-aza-2′-deoxycytidine therapy of T or NK LGL leukemia, which significantly increased survival of the mice bearing this disease. Ectopic expression of TSC-22 in mouse leukemia or lymphoma cell lines resulted in delayed in vivo tumor formation. Targeted disruption of TSC-22 in wild-type mice enhanced proliferation and in vivo repopulation efficiency of hematopoietic precursor cells (HPCs). Collectively, our data suggest that TSC-22 normally contributes to the regulation of HPC function and is a putative tumor suppressor gene that is hypermethylated and silenced in T or NK LGL leukemia.


Sign in / Sign up

Export Citation Format

Share Document