scholarly journals A Murine Model of Lyme Disease Demonstrates That Borrelia burgdorferi Colonizes the Dura Mater and Induces Inflammation in the Central Nervous System

2020 ◽  
Author(s):  
Timothy Casselli ◽  
Ali Divan ◽  
Yvonne Tourand ◽  
Heidi L. Pecoraro ◽  
Catherine A. Brissette

ABSTRACTLyme disease, which is caused by infection with Borrelia burgdorferi and related species, can lead to inflammatory pathologies affecting the joints, heart, and nervous systems including the central nervous system (CNS). Inbred laboratory mice are effective models for characterizing B. burgdorferi infection kinetics and host immune responses in joints and heart tissues; however, similar studies are lacking in the CNS of these animals. Here we characterize the kinetics of B. burgdorferi colonization and associated immune responses in the CNS of infected C3H mice during early and subacute infection. B. burgdorferi colonized the dura mater following needle or tick challenge, and induced expression of inflammatory cytokines and a robust IFN response as well as histopathological changes. A sterile IFN response in the absence of B. burgdorferi or inflammatory cytokines was unique to the brain parenchyma, and could provide insights into the mechanism of inflammatory CNS pathology associated with this important pathogen.

2021 ◽  
Vol 17 (2) ◽  
pp. e1009256
Author(s):  
Timothy Casselli ◽  
Ali Divan ◽  
Emilie E. Vomhof-DeKrey ◽  
Yvonne Tourand ◽  
Heidi L. Pecoraro ◽  
...  

Lyme disease, which is caused by infection with Borrelia burgdorferi and related species, can lead to inflammatory pathologies affecting the joints, heart, and nervous systems including the central nervous system (CNS). Inbred laboratory mice have been used to define the kinetics of B. burgdorferi infection and host immune responses in joints and heart, however similar studies are lacking in the CNS of these animals. A tractable animal model for investigating host-Borrelia interactions in the CNS is key to understanding the mechanisms of CNS pathogenesis. Therefore, we characterized the kinetics of B. burgdorferi colonization and associated immune responses in the CNS of mice during early and subacute infection. Using fluorescence-immunohistochemistry, intravital microscopy, bacterial culture, and quantitative PCR, we found B. burgdorferi routinely colonized the dura mater of C3H mice, with peak spirochete burden at day 7 post-infection. Dura mater colonization was observed for several Lyme disease agents including B. burgdorferi, B. garinii, and B. mayonii. RNA-sequencing and quantitative RT-PCR showed that B. burgdorferi infection was associated with increased expression of inflammatory cytokines and a robust interferon (IFN) response in the dura mater. Histopathologic changes including leukocytic infiltrates and vascular changes were also observed in the meninges of infected animals. In contrast to the meninges, we did not detect B. burgdorferi, infiltrating leukocytes, or large-scale changes in cytokine profiles in the cerebral cortex or hippocampus during infection; however, both brain regions demonstrated similar changes in expression of IFN-stimulated genes as observed in peripheral tissues and meninges. Taken together, B. burgdorferi is capable of colonizing the meninges in laboratory mice, and induces localized inflammation similar to peripheral tissues. A sterile IFN response in the absence of B. burgdorferi or inflammatory cytokines is unique to the brain parenchyma, and provides insight into the potential mechanisms of CNS pathology associated with this important pathogen.


Author(s):  
John J. Halperin

Nervous system involvement occurs in 10% to 15% of patients infected with Borrelia burgdorferi, B. afzelii, or B. garinii, the tick-borne spirochetes responsible for Lyme disease and its European counterparts. Common clinical manifestations include lymphocytic meningitis, facial and other cranial neuropathies, and painful mononeuropathies such as Lyme radiculitis. Diagnosis requires appropriate clinical, epidemiological, and laboratory evidence. Appropriately interpreted serologic testing is highly reliable; cerebrospinal fluid examination is often informative if the central nervous system is involved. Several week courses of widely available oral or parenteral antimicrobials are curative in most patients.


2015 ◽  
Vol 59 (4) ◽  
pp. 339-344 ◽  
Author(s):  
Juan Xing ◽  
Lisa Radkay ◽  
Sara E. Monaco ◽  
Christine G. Roth ◽  
Liron Pantanowitz

Lyme disease can affect the central nervous system causing a B-cell-predominant lymphocytic pleocytosis. Since most reactions to infection in the cerebrospinal fluid (CSF) are typically T-cell predominant, a B-cell-predominant lymphocytosis raises concern for lymphoma. We present 3 Lyme neuroborreliosis cases in order to illustrate the challenging cytomorphological and immunophenotypic features of their CSF specimens. Three male patients who presented with central nervous system manifestations were diagnosed with Lyme disease. The clinical presentation, laboratory tests, CSF cytological examination and flow-cytometric studies were described for each case. CSF cytology showed lymphocytic pleocytosis with increased plasmacytoid cells and/or plasma cells. Flow cytometry showed the presence of polytypic B lymphocytes with evidence of plasmacytic differentiation in 2 cases. In all cases, Lyme disease was confirmed by the Lyme screening test and Western blotting. In such cases of Lyme neuroborreliosis, flow cytometry of CSF samples employing plasmacytic markers and cytoplasmic light-chain analysis is diagnostically helpful to exclude lymphoma.


2015 ◽  
Vol 89 (10) ◽  
pp. 5602-5614 ◽  
Author(s):  
Fang Li ◽  
Yueyun Wang ◽  
Lan Yu ◽  
Shengbo Cao ◽  
Ke Wang ◽  
...  

ABSTRACTJapanese encephalitis is an acute zoonotic, mosquito-borne disease caused by Japanese encephalitis virus (JEV). Japanese encephalitis is characterized by extensive inflammation in the central nervous system (CNS) and disruption of the blood-brain barrier (BBB). However, the pathogenic mechanisms contributing to the BBB disruption are not known. Here, using a mouse model of intravenous JEV infection, we show that virus titers increased exponentially in the brain from 2 to 5 days postinfection. This was accompanied by an early, dramatic increase in the level of inflammatory cytokines and chemokines in the brain. Enhancement of BBB permeability, however, was not observed until day 4, suggesting that viral entry and the onset of inflammation in the CNS occurred prior to BBB damage.In vitrostudies revealed that direct infection with JEV could not induce changes in the permeability of brain microvascular endothelial cell monolayers. However, brain extracts derived from symptomatic JEV-infected mice, but not from mock-infected mice, induced significant permeability of the endothelial monolayer. Consistent with a role for inflammatory mediators in BBB disruption, the administration of gamma interferon-neutralizing antibody ameliorated the enhancement of BBB permeability in JEV-infected mice. Taken together, our data suggest that JEV enters the CNS, propagates in neurons, and induces the production of inflammatory cytokines and chemokines, which result in the disruption of the BBB.IMPORTANCEJapanese encephalitis (JE) is the leading cause of viral encephalitis in Asia, resulting in 70,000 cases each year, in which approximately 20 to 30% of cases are fatal, and a high proportion of patients survive with serious neurological and psychiatric sequelae. Pathologically, JEV infection causes an acute encephalopathy accompanied by BBB dysfunction; however, the mechanism is not clear. Thus, understanding the mechanisms of BBB disruption in JEV infection is important. Our data demonstrate that JEV gains entry into the CNS prior to BBB disruption. Furthermore, it is not JEV infectionper se, but the inflammatory cytokines/chemokines induced by JEV infection that inhibit the expression of TJ proteins and ultimately result in the enhancement of BBB permeability. Neutralization of gamma interferon (IFN-γ) ameliorated the enhancement of BBB permeability in JEV-infected mice, suggesting that IFN-γ could be a potential therapeutic target. This study would lead to identification of potential therapeutic avenues for the treatment of JEV infection.


2006 ◽  
Vol 203 (5) ◽  
pp. 1371-1381 ◽  
Author(s):  
Erin Mehlhop ◽  
Michael S. Diamond

West Nile virus (WNV) causes a severe infection of the central nervous system in several vertebrate animals including humans. Prior studies have shown that complement plays a critical role in controlling WNV infection in complement (C) 3−/− and complement receptor 1/2−/− mice. Here, we dissect the contributions of the individual complement activation pathways to the protection from WNV disease. Genetic deficiencies in C1q, C4, factor B, or factor D all resulted in increased mortality in mice, suggesting that all activation pathways function together to limit WNV spread. In the absence of alternative pathway complement activation, WNV disseminated into the central nervous system at earlier times and was associated with reduced CD8+ T cell responses yet near normal anti-WNV antibody profiles. Animals lacking the classical and lectin pathways had deficits in both B and T cell responses to WNV. Finally, and somewhat surprisingly, C1q was required for productive infection in the spleen but not for development of adaptive immune responses after WNV infection. Our results suggest that individual pathways of complement activation control WNV infection by priming adaptive immune responses through distinct mechanisms.


Neurosurgery ◽  
1984 ◽  
Vol 15 (1) ◽  
pp. 104-107 ◽  
Author(s):  
Beyhan Özden ◽  
Orhan Barlas ◽  
Uğur Hacthanefioğlu

Abstract Two cases of primary melanoma of the central nervous system originating from the dura mater and without involvement of the leptomeninges are described. In one case, the tumor was located extradurally with firm attachment to the dura mater and dural melanosis. In the other case, the dura was involved diffusely with multiple discrete masses of 1 to 3 mm in diameter. A literature review revealed five other cases of primary dural melanoma. A discussion of the origin of primary dural melanoma is presented.


2017 ◽  
Vol 74 (4) ◽  
pp. 470 ◽  
Author(s):  
Jocelyne Bloch ◽  
Stéphanie P. Lacour ◽  
Grégoire Courtine

Sign in / Sign up

Export Citation Format

Share Document