scholarly journals DNA damage independent inhibition of NF-κB transcription by anthracyclines

2020 ◽  
Author(s):  
Angelo Chora ◽  
Dora Pedroso ◽  
Nadja Pejanovic ◽  
Eleni Kyriakou ◽  
Henrique Colaço ◽  
...  

AbstractTranscriptional programs leading to induction of a large number of genes can be rapidly initiated by the activation of only few selected transcription factors. Upon stimulation of macrophages with microbial-associated molecular patterns (MAMPs), the activation of the nuclear factor kappa B (NF-κB) family of transcription factors triggers inflammatory responses that, left uncontrolled, can lead to excessive inflammation with life-threatening consequences for the host. Here we identify and characterize a novel effect of Anthracyclines, a class of drugs currently used as potent anticancer drugs, in the regulation of NF-κB transcriptional activity in BMDMs, in addition to the previously reported DNA damage and histone eviction. Anthracyclines, including Doxorubicin, Daunorubicin and Epirubicin, disturb the complexes formed between the NF-κB subunit RelA and its DNA binding sites, to limit NF-κB-dependent gene transcription during inflammatory responses, including of pivotal pro-inflammatory mediators such as TNF. We observed that suppression of inflammation can also be mediated by Aclarubicin, Doxorubicinone and the newly developed Dimethyl-doxorubicin, which share anticancer properties with the other Anthracyclines, but do not induce DNA damage in the tested concentrations. This novel mechanism of action of Anthracyclines, contributing to the reduction of inflammation, is thus independent of the activation of DNA damage responses and may be relevant for the development of novel strategies targeting immune-mediated inflammatory diseases.

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Jing Wang ◽  
Terry W. Wright ◽  
Francis Gigliotti

Pneumocystisis an opportunistic fungal respiratory pathogen that causes life-threatening pneumonia (Pcp) in patients suffering from defects in cell-mediated immunity, including those with acquired immunodeficiency syndrome (AIDS) and immunosuppression secondary to chemotherapy or organ transplantation. Despite major advances in health care, the mortality associated with Pcp has changed little over the past 25  years. Pcp remains a leading cause of death among HIV infected patients, with mortality rates of 50% or higher for patients developing severe Pcp. In addition, as more potent immunosuppressive therapies are developed for chronic inflammatory diseases, more cases of Pcp are occurring in non-HIV patients and in previously unreported clinical settings. These features highlight the importance of developing a better understanding of the pathogenesis of this disease, and the need to search for new therapeutic strategies to improve the outcome of Pcp patients. Immune-mediated inflammatory responses play an important role in the pathogenesis of Pcp, and may be even more significant in determining the outcome of Pcp than direct damage due to the organism itself. In this review we will summarize the immunopathogenic mechanisms that contribute to Pcp-associated lung injury, and discuss the potential to target these pathways for adjunctive immune modulation therapy for Pcp.


Author(s):  
Zohreh Jadali

Recent literature has highlighted the importance of chronic inflammation in psoriasis pathogenesis. Non-resolving inflammation can trigger progressive tissue damage and inflammatory mediator release which in turn perpetuate the inflammatory cycle. Under normal conditions, inflammatory responses are tightly controlled through several mechanisms that restore normal tissue function and structure. Defects in regulatory mechanisms of the inflammatory response can result in persistent unresolved inflammation and further increases of inflammation. Therefore, this review focuses on defects in regulatory mechanisms of inflammatory responses that lead to uncontrolled chronic inflammation in psoriasis. Databases such as Pubmed Embase, ISI, and Iranian databases including Iranmedex, and SID were researched to identify relevant literature. The results of this review indicate that dysregulation of the inflammatory response may be a likely cause of various immune-mediated inflammatory disorders such as psoriasis. Based on current findings, advances in understanding the cellular and molecular mechanisms involved in inflammation resolution are not only improving our knowledge of the pathogenesis of chronic inflammatory diseases but also supporting the development of new therapeutic strategies.


2018 ◽  
Vol 19 (12) ◽  
pp. 3851 ◽  
Author(s):  
Drew Neavin ◽  
Duan Liu ◽  
Balmiki Ray ◽  
Richard Weinshilboum

The aryl hydrocarbon receptor (AHR) is a nuclear receptor that modulates the response to environmental stimuli. It was recognized historically for its role in toxicology but, in recent decades, it has been increasingly recognized as an important modulator of disease—especially for its role in modulating immune and inflammatory responses. AHR has been implicated in many diseases that are driven by immune/inflammatory processes, including major depressive disorder, multiple sclerosis, rheumatoid arthritis, asthma, and allergic responses, among others. The mechanisms by which AHR has been suggested to impact immune/inflammatory diseases include targeted gene expression and altered immune differentiation. It has been suggested that single nucleotide polymorphisms (SNPs) that are near AHR-regulated genes may contribute to AHR-dependent disease mechanisms/pathways. Further, we have found that SNPs that are outside of nuclear receptor binding sites (i.e., outside of AHR response elements (AHREs)) may contribute to AHR-dependent gene regulation in a SNP- and ligand-dependent manner. This review will discuss the evidence and mechanisms of AHR contributions to immune/inflammatory diseases and will consider the possibility that SNPs that are outside of AHR binding sites might contribute to AHR ligand-dependent inter-individual variation in disease pathophysiology and response to pharmacotherapeutics.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S319-S319
Author(s):  
Sunmin Park ◽  
Juwon Kim ◽  
Hyo Youl Kim ◽  
Young Uh ◽  
Young Keun Kim

Abstract Background Severe fever with thrombocytopenia (SFTS) is an emerging infectious disease caused by a novel bunyavirus designated SFTS virus (SFTSV) with a high fatality rate. Hemophagocytic lymphohistiocytosis (HLH) is an immune-mediated life-threatening disease triggered by infections, neoplasms and noninfectious inflammatory diseases. A few HLH associated with SFTSV were reported. According to the diagnostic criteria of HLH, 11 patients with SFTS were reviewed. Methods During last 2 years (2015–2016), 11 SFTS patients were diagnosed at the Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea. Clinical features were analyzed using diagnostic criteria of 2004-HLH trial. We described if the prognosis of SFTSV-infected patients was associated with clinical features of HLH. Results Of 11 patients, four patients were fulfillled the diagnostic criteria of 2004-HLH trial (five of eight criteria). Two patients were fulfilled the four criteria. Five patients were fulfilled three or less criteria. Three of six patients who fulfilled four or more criteria were died. There was no mortality in five patients who fulfilled three or less criteria. Hemophagocytosis in bone marrow (BM) was observed in all six patients who were taken BM study. Conclusion In SFTS, HLH was severe clinical feature and it might be associated with poor prognosis. Disclosures All authors: No reported disclosures.


2017 ◽  
Author(s):  
Ramsey I. Kamar ◽  
Edward J. Banigan ◽  
Aykut Erbas ◽  
Rebecca D. Giuntoli ◽  
Monica Olvera de la Cruz ◽  
...  

ABSTRACTThe binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits TF off-rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key E. coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate ∽1 × 104 M-1s-1, establishing that FD of Fis occurs at the single-binding-site level, and we find that the off-rate saturates at large Fis concentrations in solution. While spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that facilitated dissociation depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF whose structure differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap.SIGNIFICANCE STATEMENTTranscription factors (TFs) control biological processes by binding and unbinding to DNA. Therefore it is crucial to understand the mechanisms that affect TF binding kinetics. Recent studies challenge the standard picture of TF binding kinetics by demonstrating cases of proteins in solution accelerating TF dissociation rates through a facilitated dissociation (FD) process. Our study shows that FD can occur at the level of single binding sites, without the action of large protein clusters or long DNA segments. Our results quantitatively support a model of FD in which competitor proteins invade partially dissociated states of DNA-bound TFs. FD is expected to be a general mechanism for modulating gene expression by altering the occupancy of TFs on the genome.Author ContributionsRamsey I. Kamardesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paperEdward J. Banigandesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paperAykut Erbasdesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paperRebecca D. Giuntolidesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paperMonica Olvera de la Cruzdesigned research, performed research, wrote the paperReid C. Johnsondesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paperJohn F. Markodesigned research, performed research, contributed new reagents/analytic tools, analyzed data, wrote the paper


1994 ◽  
Vol 14 (11) ◽  
pp. 7592-7603
Author(s):  
P E Kroeger ◽  
R I Morimoto

Multiple heat shock transcription factors (HSFs) have been discovered in several higher eukaryotes, raising questions about their respective functions in the cellular stress response. Previously, we had demonstrated that the two mouse HSFs (mHSF1 and mHSF2) interacted differently with the HSP70 heat shock element (HSE). To further address the issues of cooperativity and the interaction of multiple HSFs with the HSE, we selected new mHSF1 and mHSF2 DNA-binding sites through protein binding and PCR amplification. The selected sequences, isolated from a random population, were composed primarily of alternating inverted arrays of the pentameric consensus 5'-nGAAn-3', and the nucleotides flanking the core GAA motif were nonrandom. The average number of pentamers selected in each binding site was four to five for mHSF1 and two to three for mHSF2, suggesting differences in the potential for cooperative interactions between adjacent trimers. Our comparison of mHSF1 and mHSF2 binding to selected sequences further substantiated these differences in cooperativity as mHSF1, unlike mHSF2, was able to bind to extended HSE sequences, confirming previous observations on the HSP70 HSE. Certain selected sequences that exhibited preferential binding of mHSF1 or mHSF2 were mutagenized, and these studies demonstrated that the affinity of an HSE for a particular HSF and the extent of HSF interaction could be altered by single base substitutions. The domain of mHSF1 utilized for cooperative interactions was transferable, as chimeric mHSF1/mHSF2 proteins demonstrated that sequences within or adjacent to the mHSF1 DNA-binding domain were responsible. We have demonstrated that HSEs can have a greater affinity for a specific HSF and that in mice, mHSF1 utilizes a higher degree of cooperativity in DNA binding. This suggests two ways in which cells have developed to regulate the activity of closely related transcription factors: developing the ability to fully occupy the target binding site and alteration of the target site to favor interaction with a specific factor.


2013 ◽  
Vol 42 (1) ◽  
pp. 430-441 ◽  
Author(s):  
Iris Dror ◽  
Tianyin Zhou ◽  
Yael Mandel-Gutfreund ◽  
Remo Rohs

2019 ◽  
Vol 80 (3) ◽  
pp. 382-393 ◽  
Author(s):  
Mario Capasso ◽  
Vito Alessandro Lasorsa ◽  
Flora Cimmino ◽  
Marianna Avitabile ◽  
Sueva Cantalupo ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 396
Author(s):  
Malihe Eskandarpour ◽  
Miles A. Nunn ◽  
Wynne Weston-Davies ◽  
Virginia L. Calder

Retinal vascular diseases have distinct, complex and multifactorial pathogeneses yet share several key pathophysiological aspects including inflammation, vascular permeability and neovascularisation. In non-infectious posterior uveitis (NIU), retinal vasculitis involves vessel leakage leading to retinal enlargement, exudation, and macular oedema. Neovascularisation is not a common feature in NIU, however, detection of the major angiogenic factor—vascular endothelial growth factor A (VEGF-A)—in intraocular fluids in animal models of uveitis may be an indication for a role for this cytokine in a highly inflammatory condition. Suppression of VEGF-A by directly targeting the leukotriene B4 (LTB4) receptor (BLT1) pathway indicates a connection between leukotrienes (LTs), which have prominent roles in initiating and propagating inflammatory responses, and VEGF-A in retinal inflammatory diseases. Further research is needed to understand how LTs interact with intraocular cytokines in retinal inflammatory diseases to guide the development of novel therapeutic approaches targeting both inflammatory mediator pathways.


Sign in / Sign up

Export Citation Format

Share Document