scholarly journals The TAT Protein Transduction Domain as an Intra-articular Drug-Delivery Technology

2020 ◽  
Author(s):  
Sarah E. Mailhiot ◽  
Matthew A. Thompson ◽  
Akiko E. Eguchi ◽  
Sabrina E. Dinkel ◽  
Martin K. Lotz ◽  
...  

AbstractObjectiveIntra-articular drug delivery holds great promise for the treatment of joint diseases such as osteoarthritis. The objective of this study was to evaluate the TAT peptide transduction domain (TAT-PTD) as a potential intra-articular drug delivery technology for synovial joints.DesignExperiments examined the ability of TAT conjugates to associate with primary chondrocytes and alter cellular function both in vitro and in vivo. Further experiments examined the ability of the TAT-PTD to bind to human osteoarthritic cartilage.ResultsThe results show that the TAT-PTD associates with chondrocytes, is capable of delivering siRNA for chondrocyte gene knockdown, and that the recombinant enzyme TAT-Cre is capable of inducing in vivo genetic recombination within the knee joint in a reporter mouse model. Lastly, binding studies show that osteoarthritic cartilage preferentially uptakes the TAT-PTD from solution.ConclusionsThe results suggest that the TAT-PTD is a promising delivery strategy for intra-articular therapeutics.

Cartilage ◽  
2020 ◽  
pp. 194760352095939
Author(s):  
Sarah E. Mailhiot ◽  
Matthew A. Thompson ◽  
Akiko E. Eguchi ◽  
Sabrina E. Dinkel ◽  
Martin K. Lotz ◽  
...  

Objective Intra-articular drug delivery holds great promise for the treatment of joint diseases such as osteoarthritis. The objective of this study was to evaluate the TAT peptide transduction domain (TAT-PTD) as a potential intra-articular drug delivery technology for synovial joints. Design Experiments examined the ability of TAT conjugates to associate with primary chondrocytes and alter cellular function both in vitro and in vivo. Further experiments examined the ability of the TAT-PTD to bind to human osteoarthritic cartilage. Results The results show that the TAT-PTD associates with chondrocytes, is capable of delivering siRNA for chondrocyte gene knockdown, and that the recombinant enzyme TAT-Cre is capable of inducing in vivo genetic recombination within the knee joint in a reporter mouse model. Last, binding studies show that osteoarthritic cartilage preferentially uptakes the TAT-PTD from solution. Conclusions The results suggest that the TAT-PTD is a promising delivery strategy for intra-articular therapeutics.


2017 ◽  
Vol 312 (1) ◽  
pp. F54-F64 ◽  
Author(s):  
Gene L. Bidwell ◽  
Fakhri Mahdi ◽  
Qingmei Shao ◽  
Omar C. Logue ◽  
Jamarius P. Waller ◽  
...  

Improving drug delivery to the kidney using renal-targeted therapeutics is a promising but underdeveloped area. We aimed to develop a kidney-targeting construct for renal-specific drug delivery. Elastin-like polypeptides (ELPs) are nonimmunogenic protein-based carriers that can stabilize attached small-molecule and peptide therapeutics. We modified ELP at its NH2-terminus with a cyclic, seven-amino acid kidney-targeting peptide (KTP) and at its COOH-terminus with a cysteine residue for tracer conjugation. Comparative in vivo pharmacokinetics and biodistribution in rat and swine models and in vitro cell binding studies using human renal cells were performed. KTP-ELP had a longer plasma half-life than ELP in both animal models and was similarly accumulated in kidneys at levels fivefold higher than untargeted ELP, showing renal levels 15- to over 150-fold higher than in other major organs. Renal fluorescence histology demonstrated high accumulation of KTP-ELP in proximal tubules and vascular endothelium. Furthermore, a 14-day infusion of a high dose of ELP or KTP-ELP did not affect body weight, glomerular filtration rate, or albuminuria, or induce renal tissue damage compared with saline-treated controls. In vitro experiments showed higher binding of KTP-ELP to human podocytes, proximal tubule epithelial, and glomerular microvascular endothelial cells than untargeted ELP. These results show the high renal selectivity of KTP-ELP, support the notion that the construct is not species specific, and demonstrate that it does not induce acute renal toxicity. The plasticity of ELP for attachment of any class of therapeutics unlocks the possibility of applying ELP technology for targeted treatment of renal disease in future studies.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5649
Author(s):  
Shijie Zhuo ◽  
Feng Zhang ◽  
Junyu Yu ◽  
Xican Zhang ◽  
Guangbao Yang ◽  
...  

The development of precise and personalized medicine requires novel formulation strategies to deliver the therapeutic payloads to the pathological tissues, producing enhanced therapeutic outcome and reduced side effects. As many diseased tissues are feathered with acidic characteristics microenvironment, pH-sensitive biomaterials for drug delivery present great promise for the purpose, which could protect the therapeutic payloads from metabolism and degradation during in vivo circulation and exhibit responsive release of the therapeutics triggered by the acidic pathological tissues, especially for cancer treatment. In the past decades, many methodologies, such as acidic cleavage linkage, have been applied for fabrication of pH-responsive materials for both in vitro and in vivo applications. In this review, we will summarize some pH-sensitive drug delivery system for medical application, mainly focusing on the pH-sensitive linkage bonds and pH-sensitive biomaterials.


2020 ◽  
Author(s):  
Shelby B. Smiley ◽  
Yeonhee Yun ◽  
Pranav Ayyagari ◽  
Harlan E. Shannon ◽  
Karen E. Pollok ◽  
...  

AbstractGlioblastoma (GBM) is a malignant brain tumor with a poor long-term prognosis. The current median survival is approximately fifteen to twenty months with the standard of care therapy which includes surgery, radiation, and chemotherapy. An important factor contributing to recurrence of GBM is high resistance of GBM cancer stem cells (CSCs) to several anticancer drugs, for which a systemically delivered single drug approach will be unlikely to produce a viable cure. Therefore, multidrug therapies have the potential to improve the survival time. Currently, only temozolomide (TMZ), which is a DNA alkylator, affects overall survival in GBM patients. CSCs regenerate rapidly and over-express a methyl transferase which overrides the DNA-alkylating mechanism of TMZ, leading to drug resistance. Idasanutlin (RG7388, R05503781) is a potent, selective MDM2 antagonist that additively kills GBM CSCs when combined with TMZ. Nanotechnology is an emerging field that shows great promise in drug delivery and diagnostics. The ability to combine both therapy and imaging allows real time assessment of drug delivery in vivo for the field of theranostics.To develop a multi-drug therapy using multi-functional nanoparticles (NPs) that preferentially target the GBM CSC subpopulation and provide in vivo preclinical imaging capability. Polymer-micellar NPs composed of poly(styrene-b-ethylene oxide) (PS-b-PEO) and poly(lactic-co-glycolic) acid (PLGA) were developed investigating both single and double emulsion fabrication techniques as well as combinations of TMZ and RG7388. The NPs were covalently bound to a 15-base-pair CD133 aptamer in order to target the CD133 antigen expressed on the surface of GBM CSC subpopulation. For theranostic functionality, the NPs were also labelled with a radiotracer, Zirconium-89 (89Zr). The NPs maintained a small size of less than 100 nm, a low negative charge and exhibited the ability to effectively target and kill the CSC subpopulation. In addition, the conjugation of the CD133 aptamer was able to promote killing in CSCs leading to the justification of a targeted nanosystem to potentially improve localized therapy in future in vivo models. This work has provided a potentially therapeutic option for GBM specific for CSC targeting and theranostic imaging.


2020 ◽  
Author(s):  
Michael Hofstetter ◽  
Euy Sung Moon ◽  
Fabio D'Angelo ◽  
Lucien Geissbühler ◽  
Ian Alberts ◽  
...  

Abstract Background: Gastrin Releasing Peptide receptor (GRPr)-based radioligands, mainly antagonists, have shown great promise for diagnostic imaging of GRPr-positive cancers, such as prostate and breast.The present study aims at developing and evaluating a versatile GRPr-based probe for both PET / SPECT imaging as well as intraoperative and therapeutic applications. The influence of the versatile chelator AAZTA5 on the radiometal labelling properties and the in vitro performance of the generated radiotracers were thoroughly investigated.The GRPr-based antagonist D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 was functionalized with the chelator 6-[Bis(carboxymethyl)amino]-1,4-bis(carboyxmethyl)-6-methyl-1,4-diazepane (AAZTA5) through the spacer 4-amino-1-carboxymethyl-piperidine (Pip) to obtain AAZTA5-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 (LF1). LF1 was radiolabelled with 68Ga (PET), 111In (SPECT, intraoperative applications) and 177Lu (therapy, SPECT). In vitro evaluation included stability studies, determination of lipophilicity, protein-binding studies, determination of Kd and Bmax as well as internalization studies using the epithelial human prostate cancer cell line PC3. In vitro monotherapy as well as combination therapy studies were further performed to assess its applicability as a theranostic compound.Results: LF1 was labelled with 68Ga, 111In and 177Lu within 5 min at room temperature (RT). The molar activities (Am) were ranging between 50-60 MBq/nmol for 68Ga-LF1, 10-20 MBq/nmol for 111In-LF1 and 177Lu-LF1. The radiotracers were found to be stable for a period of 4 h post labeling exhibiting a hydrophilic profile with an average of a LogDoctanol/PBS of -3, while the bound activity to the human serum protein was approximately 10%. 68/natGa-LF1, 177/natLu-LF1 and 111/natIn-LF1 exhibited high affinity for the PC3 cells, with Kd values of 16.27±2.45 nM, 10.25±2.73 nM and 5.16±1.94 nM, respectively, and the required concentration of the radiotracers to saturate the receptors (Bmax) was between 0.5 and 0.8 nM which corresponds to approximately 4 x 105 receptors per cell. Low specific internalization rate was found in cell culture, while the total specific cell surface bound uptake always exceeded the internalized activity. In vitro therapy studies showed that combination of 177Lu-LF1 with rapamycin inhibit the growth of PC3 cells more efficiently compared to 177Lu-LF1 alone.Conclusion: Encouraged by these promising in vitro data, preclinical evaluation of the LF1 precursor are planned in tumour models in vivo.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2019 ◽  
Vol 16 (8) ◽  
pp. 688-697
Author(s):  
Ravinder Verma ◽  
Deepak Kaushik

: In vitro lipolysis has emerged as a powerful tool in the development of in vitro in vivo correlation for Lipid-based Drug Delivery System (LbDDS). In vitro lipolysis possesses the ability to mimic the assimilation of LbDDS in the human biological system. The digestion medium for in vitro lipolysis commonly contains an aqueous buffer media, bile salts, phospholipids and sodium chloride. The concentrations of these compounds are defined by the physiological conditions prevailing in the fasted or fed state. The pH of the medium is monitored by a pH-sensitive electrode connected to a computercontrolled pH-stat device capable of maintaining a predefined pH value via titration with sodium hydroxide. Copenhagen, Monash and Jerusalem are used as different models for in vitro lipolysis studies. The most common approach used in evaluating the kinetics of lipolysis of emulsion-based encapsulation systems is the pH-stat titration technique. This is widely used in both the nutritional and the pharmacological research fields as a rapid screening tool. Analytical tools for the assessment of in vitro lipolysis include HPLC, GC, HPTLC, SEM, Cryo TEM, Electron paramagnetic resonance spectroscopy, Raman spectroscopy and Nanoparticle Tracking Analysis (NTA) for the characterization of the lipids and colloidal phases after digestion of lipids. Various researches have been carried out for the establishment of IVIVC by using in vitro lipolysis models. The current publication also presents an updated review of various researches in the field of in vitro lipolysis.


2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


2021 ◽  
Vol 20 ◽  
pp. 153303382110278
Author(s):  
Yayan Yang ◽  
Qian Feng ◽  
Chuanfeng Ding ◽  
Wei Kang ◽  
Xiufeng Xiao ◽  
...  

Although Epirubicin (EPI) is a commonly used anthracycline for the treatment of breast cancer in clinic, the serious side effects limit its long-term administration including myelosuppression and cardiomyopathy. Nanomedicines have been widely utilized as drug delivery vehicles to achieve precise targeting of breast cancer cells. Herein, we prepared a DSPE-PEG nanocarrier conjugated a peptide, which targeted the breast cancer overexpression protein Na+/K+ ATPase α1 (NKA-α1). The nanocarrier encapsulated the EPI and grafted with the NKA-α1 targeting peptide through the click reaction between maleimide and thiol groups. The EPI was slowly released from the nanocarrier after entering the breast cancer cells with the guidance of the targeting NKA-α1 peptide. The precise and controllable delivery and release of the EPI into the breast cancer cells dramatically inhibited the cells proliferation and migration in vitro and suppressed the tumor volume in vivo. These results demonstrate significant prospects for this nanocarrier as a promising platform for numerous chemotherapy drugs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


Sign in / Sign up

Export Citation Format

Share Document