scholarly journals No evidence for transient transformation via pollen magnetofection in several monocot species

2020 ◽  
Author(s):  
Zuzana Vejlupkova ◽  
Cedar Warman ◽  
Rita Sharma ◽  
Henrik Vibe Scheller ◽  
Jenny C. Mortimer ◽  
...  

ABSTRACTThe development of rapid and efficient transformation methods for many plant species remains an obstacle in both the basic and applied plant sciences. A novel method described by Zhao et al. (2017) used magnetic nanoparticles to deliver DNA into pollen grains of several dicot species, and one monocot (lily), to achieve transformation (“pollen magnetofection”). Using the published protocol, extensive trials by two independent research groups showed no indication of transient transformation success with pollen from two monocots, maize and sorghum. To further address the feasibility of magnetofection, lily pollen was used for side-by-side trials of magnetofection with a proven methodology for transient transformation, biolistics. Using a Green Fluorescent Protein reporter plasmid, transformation efficiency with the biolistic approach averaged 0.7% over three trials. However, the same plasmid produced no recognizable transformants via magnetofection, despite screening >3500 individual pollen grains. We conclude that pollen magnetofection is not effective for transient transformation of pollen for at least three species of monocots, and suggest that efforts to replicate the magnetofection protocol in dicot species would be useful to fully assess its potential.ARISING FROM Zhao et al. Nature Plantshttps://doi.org/10.1038/s41477-017-0063-z (2017)

1999 ◽  
Vol 19 (12) ◽  
pp. 8191-8200 ◽  
Author(s):  
Philippe Bastin ◽  
Thomas H. MacRae ◽  
Susan B. Francis ◽  
Keith R. Matthews ◽  
Keith Gull

ABSTRACT The paraflagellar rod (PFR) of the African trypanosomeTrypanosoma brucei represents an excellent model to study flagellum assembly. The PFR is an intraflagellar structure present alongside the axoneme and is composed of two major proteins, PFRA and PFRC. By inducible expression of a functional epitope-tagged PFRA protein, we have been able to monitor PFR assembly in vivo. As T. brucei cells progress through their cell cycle, they possess both an old and a new flagellum. The induction of expression of tagged PFRA in trypanosomes growing a new flagellum provided an excellent marker of newly synthesized subunits. This procedure showed two different sites of addition: a major, polar site at the distal tip of the flagellum and a minor, nonpolar site along the length of the partially assembled PFR. Moreover, we have observed turnover of epitope-tagged PFRA in old flagella that takes place throughout the length of the PFR structure. Expression of truncated PFRA mutant proteins identified a sequence necessary for flagellum localization by import or binding. This sequence was not sufficient to confer full flagellum localization to a green fluorescent protein reporter. A second sequence, necessary for the addition of PFRA protein to the distal tip, was also identified. In the absence of this sequence, the mutant PFRA proteins were localized both in the cytosol and in the flagellum where they could still be added along the length of the PFR. This seven-amino-acid sequence is conserved in all PFRA and PFRC proteins and shows homology to a sequence in the flagellar dynein heavy chain of Chlamydomonas reinhardtii.


2002 ◽  
Vol 184 (7) ◽  
pp. 1998-2004 ◽  
Author(s):  
Takako Murakami ◽  
Koki Haga ◽  
Michio Takeuchi ◽  
Tsutomu Sato

ABSTRACT The Bacillus subtilis spoIIIJ gene, which has been proven to be vegetatively expressed, has also been implicated as a sporulation gene. Recent genome sequencing information in many organisms reveals that spoIIIJ and its paralogous gene, yqjG, are conserved from prokaryotes to humans. A homologue of SpoIIIJ/YqjG, the Escherichia coli YidC is involved in the insertion of membrane proteins into the lipid bilayer. On the basis of this similarity, it was proposed that the two homologues act as translocase for the membrane proteins. We studied the requirements for spoIIIJ and yqjG during vegetative growth and sporulation. In rich media, the growth of spoIIIJ and yqjG single mutants were the same as that of the wild type, whereas spoIIIJ yqjG double inactivation was lethal, indicating that together these B. subtilis translocase homologues play an important role in maintaining the viability of the cell. This result also suggests that SpoIIIJ and YqjG probably control significantly overlapping functions during vegetative growth. spoIIIJ mutations have already been established to block sporulation at stage III. In contrast, disruption of yqjG did not interfere with sporulation. We further show that high level expression of spoIIIJ during vegetative phase is dispensable for spore formation, but the sporulation-specific expression of spoIIIJ is necessary for efficient sporulation even at the basal level. Using green fluorescent protein reporter to monitor SpoIIIJ and YqjG localization, we found that the proteins localize at the cell membrane in vegetative cells and at the polar and engulfment septa in sporulating cells. This localization of SpoIIIJ at the sporulation-specific septa may be important for the role of spoIIIJ during sporulation.


Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 4105-4111 ◽  
Author(s):  
Q. Long ◽  
A. Meng ◽  
H. Wang ◽  
J.R. Jessen ◽  
M.J. Farrell ◽  
...  

In this study, DNA constructs containing the putative zebrafish promoter sequences of GATA-1, an erythroid-specific transcription factor, and the green fluorescent protein reporter gene, were microinjected into single-cell zebrafish embryos. Erythroid-specific activity of the GATA-1 promoter was observed in living embryos during early development. Fluorescent circulating blood cells were detected in microinjected embryos 24 hours after fertilization and were still present in 2-month-old fish. Germline transgenic fish obtained from the injected founders continued to express green fluorescent protein in erythroid cells in the F1 and F2 generations. The green fluorescent protein expression patterns in transgenic fish were consistent with the pattern of GATA-1 mRNA expression detected by RNA in situ hybridization. These transgenic fish have allowed us to isolate, by fluorescence-activated cell sorting, the earliest erythroid progenitor cells from developing embryos for in vitro studies. By generating transgenic fish using constructs containing other zebrafish promoters and green fluorescent protein reporter gene, it should be possible to visualize the origin and migration of any lineage-specific progenitor cells in a living embryo.


2006 ◽  
Vol 188 (8) ◽  
pp. 3099-3109 ◽  
Author(s):  
Jan-Willem Veening ◽  
Oscar P. Kuipers ◽  
Stanley Brul ◽  
Klaas J. Hellingwerf ◽  
Remco Kort

ABSTRACT The spore-forming bacterium Bacillus subtilis is able to form highly organized multicellular communities called biofilms. This coordinated bacterial behavior is often lost in domesticated or laboratory strains as a result of planktonic growth in rich media for many generations. However, we show here that the laboratory strain B. subtilis 168 is still capable of forming spatially organized multicellular communities on minimal medium agar plates, exemplified by colonies with vein-like structures formed by elevated bundles of cells. In line with the current model for biofilm formation, we demonstrate that overproduction of the phosphorelay components KinA and Spo0A stimulates bundle formation, while overproduction of the transition state regulators AbrB and SinR leads to repression of formation of elevated bundles. Time-lapse fluorescence microscopy studies of B. subtilis green fluorescent protein reporter strains show that bundles are preferential sites for spore formation and that flat structures surrounding the bundles contain vegetative cells. The elevated bundle structures are formed prior to sporulation, in agreement with a genetic developmental program in which these processes are sequentially activated. Perturbations of the phosphorelay by disruption and overexpression of genes that lead to an increased tendency to sporulate result in the segregation of sporulation mutations and decreased heat resistance of spores in biofilms. These results stress the importance of a balanced control of the phosphorelay for biofilm and spore development.


Blood ◽  
2004 ◽  
Vol 103 (10) ◽  
pp. 3615-3623 ◽  
Author(s):  
Jonathan Back ◽  
Andrée Dierich ◽  
Corinne Bronn ◽  
Philippe Kastner ◽  
Susan Chan

Abstract PU.1 is a hematopoietic-specific transcriptional activator that is absolutely required for the differentiation of B lymphocytes and myeloid-lineage cells. Although PU.1 is also expressed by early erythroid progenitor cells, its role in erythropoiesis, if any, is unknown. To investigate the relevance of PU.1 in erythropoiesis, we produced a line of PU.1-deficient mice carrying a green fluorescent protein reporter at this locus. We report here that PU.1 is tightly regulated during differentiation—it is expressed at low levels in erythroid progenitor cells and down-regulated upon terminal differentiation. Strikingly, PU.1-deficient fetal erythroid progenitors lose their self-renewal capacity and undergo proliferation arrest, premature differentiation, and apoptosis. In adult mice lacking one PU.1 allele, similar defects are detected following stress-induced erythropoiesis. These studies identify PU.1 as a novel and critical regulator of erythropoiesis and highlight the versatility of this transcription factor in promoting or preventing differentiation depending on the hematopoietic lineage.


Sign in / Sign up

Export Citation Format

Share Document