scholarly journals Differential Response of Digesta- and Mucosa-Associated Intestinal Microbiota to Dietary Black Soldier Fly (Hermetia illucens) Larvae Meal in Seawater Phase Atlantic Salmon (Salmo salar)

2020 ◽  
Author(s):  
Yanxian Li ◽  
Leonardo Bruni ◽  
Alexander Jaramillo-Torres ◽  
Karina Gajardo ◽  
Trond M. Kortner ◽  
...  

Intestinal digesta is commonly used for studying responses of microbiota to dietary shifts, yet evidence is accumulating that it represents an incomplete view of the intestinal microbiota. In a 16-week seawater feeding trial, Atlantic salmon (Salmo salar) were fed either a commercially-relevant reference diet or an insect meal diet containing 15% black soldier fly (Hermetia illucens) larvae meal. The digesta- and mucosa-associated distal intestinal microbiota were profiled by 16S rRNA gene sequencing. Regardless of diet, we observed substantial differences between digesta- and mucosa-associated intestinal microbiota. Microbial richness and diversity were much higher in the digesta than the mucosa. The insect meal diet altered the distal intestinal microbiota resulting in higher microbial richness and diversity. The diet effect, however, depended on the sample origin. Digesta-associated intestinal microbiota showed more pronounced changes than the mucosa-associated microbiota. Lastly, multivariate association analyses identified two mucosa-enriched taxa, Brevinema andersonii and unclassified Spirochaetaceae, associated with the expression of genes related to immune responses and barrier function in the distal intestine, respectively. Overall, our data clearly indicate that responses in digesta- and mucosa-associated microbiota to dietary inclusion of insect meal differ, with the latter being more resilient to dietary changes.

2020 ◽  
Author(s):  
Yanxian Li ◽  
Leonardo Bruni ◽  
Alexander Jaramillo-Torres ◽  
Karina Gajardo ◽  
Trond M. Kortner ◽  
...  

Abstract Background: Intestinal digesta is commonly used for studying responses of microbiota to dietary shifts, yet evidence is accumulating that it represents an incomplete view of the intestinal microbiota. The present work aims to investigate the differences between digesta- and mucosa-associated intestinal microbiota in Atlantic salmon (Salmo salar) and how they may respond differently to dietary perturbations. In a 16-week seawater feeding trial, Atlantic salmon were fed either a commercially-relevant reference diet or an insect meal diet containing ~15% black soldier fly (Hermetia illucens) larvae meal. The digesta- and mucosa-associated distal intestinal microbiota were profiled by 16S rRNA gene sequencing. Results: Regardless of diet, we observed substantial differences between digesta- and mucosa-associated intestinal microbiota. Microbial richness and diversity were much higher in the digesta than the mucosa. The insect meal diet altered the distal intestinal microbiota resulting in higher microbial richness and diversity. The diet effect, however, depended on the sample origin. Digesta-associated intestinal microbiota showed more pronounced changes than the mucosa-associated microbiota. Multivariate association analyses identified two mucosa-enriched taxa, Brevinema andersonii and Spirochaetaceae, associated with the expression of genes related to immune responses and barrier function in the distal intestine, respectively. Conclusions: Our data show that salmon intestinal digesta and mucosa harbor microbial communities with clear differences. Mucosa-associated intestinal microbiota seems more resilient to variations in the diet composition than digesta-associated intestinal microbiota. To fully unveil the response of intestinal microbiota to dietary changes, concurrent profiling of digesta- and mucosa-associated intestinal microbiota is recommended whenever feasible.


2020 ◽  
Author(s):  
Yanxian Li ◽  
Leonardo Bruni ◽  
Alexander Jaramillo-Torres ◽  
Karina Gajardo ◽  
Trond M. Kortner ◽  
...  

Abstract Background: Intestinal digesta is commonly used for studying responses of microbiota to dietary shifts, yet evidence is accumulating that it represents an incomplete view of the intestinal microbiota. The present work aims to investigate the differences between digesta- and mucosa-associated intestinal microbiota in Atlantic salmon ( Salmo salar ) and how they may respond differently to dietary perturbations. In a 16-week seawater feeding trial, Atlantic salmon were fed either a commercially-relevant reference diet or an insect meal diet containing ~15% black soldier fly ( Hermetia illucens ) larvae meal. The digesta- and mucosa-associated distal intestinal microbiota were profiled by 16S rRNA gene sequencing. Results: Regardless of diet, we observed substantial differences between digesta- and mucosa-associated intestinal microbiota. Microbial richness and diversity were much higher in the digesta than the mucosa. The insect meal diet altered the distal intestinal microbiota resulting in higher microbial richness and diversity. The diet effect, however, depended on the sample origin. Digesta-associated intestinal microbiota showed more pronounced changes than the mucosa-associated microbiota. Multivariate association analyses identified two mucosa-enriched taxa, Brevinema andersonii and unclassified Spirochaetaceae , associated with the expression of genes related to immune responses and barrier function in the distal intestine, respectively. Conclusions: Our data show that salmon intestinal digesta and mucosa harbor microbial communities with clear differences. Mucosa-associated intestinal microbiota seems more resilient to variations in the diet composition than digesta-associated intestinal microbiota. To fully unveil the response of intestinal microbiota to dietary changes, concurrent profiling of digesta- and mucosa-associated intestinal microbiota is recommended whenever feasible.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yanxian Li ◽  
Leonardo Bruni ◽  
Alexander Jaramillo-Torres ◽  
Karina Gajardo ◽  
Trond M. Kortner ◽  
...  

Abstract Background Intestinal digesta is commonly used for studying responses of microbiota to dietary shifts, yet evidence is accumulating that it represents an incomplete view of the intestinal microbiota. The present work aims to investigate the differences between digesta- and mucosa-associated intestinal microbiota in Atlantic salmon (Salmo salar) and how they may respond differently to dietary perturbations. In a 16-week seawater feeding trial, Atlantic salmon were fed either a commercially-relevant reference diet or an insect meal diet containing ~ 15% black soldier fly (Hermetia illucens) larvae meal. The digesta- and mucosa-associated distal intestinal microbiota were profiled by 16S rRNA gene sequencing. Results Regardless of diet, we observed substantial differences between digesta- and mucosa-associated intestinal microbiota. Microbial richness and diversity were much higher in the digesta than the mucosa. The insect meal diet altered the distal intestinal microbiota resulting in higher microbial richness and diversity. The diet effect, however, depended on the sample origin. Digesta-associated intestinal microbiota showed more pronounced changes than the mucosa-associated microbiota. Multivariate association analyses identified two mucosa-enriched taxa, Brevinema andersonii and Spirochaetaceae, associated with the expression of genes related to immune responses and barrier function in the distal intestine, respectively. Conclusions Our data show that salmon intestinal digesta and mucosa harbor microbial communities with clear differences. While feeding insects increased microbial richness and diversity in both digesta- and mucosa-associated intestinal microbiota, mucosa-associated intestinal microbiota seems more resilient to variations in the diet composition. To fully unveil the response of intestinal microbiota to dietary changes, concurrent profiling of digesta- and mucosa-associated intestinal microbiota is recommended whenever feasible. Specific taxa enriched in the intestinal mucosa are associated to gene expression related to immune responses and barrier function. Detailed studies are needed on the ecological and functional significance of taxa associated to intestinal microbiota dwelling on the mucosa.


2021 ◽  
Author(s):  
Yanxian Li ◽  
Leonardo Bruni ◽  
Alexander Jaramillo-Torres ◽  
Karina Gajardo ◽  
Trond M. Kortner ◽  
...  

Abstract Background: Intestinal digesta is commonly used for studying responses of microbiota to dietary shifts, yet evidence is accumulating that it represents an incomplete view of the intestinal microbiota. The present work aims to investigate the differences between digesta- and mucosa-associated intestinal microbiota in Atlantic salmon (Salmo salar) and how they may respond differently to dietary perturbations. In a 16-week seawater feeding trial, Atlantic salmon were fed either a commercially-relevant reference diet or an insect meal diet containing ~15% black soldier fly (Hermetia illucens) larvae meal. The digesta- and mucosa-associated distal intestinal microbiota were profiled by 16S rRNA gene sequencing. Results: Regardless of diet, we observed substantial differences between digesta- and mucosa-associated intestinal microbiota. Microbial richness and diversity were much higher in the digesta than the mucosa. The insect meal diet altered the distal intestinal microbiota resulting in higher microbial richness and diversity. The diet effect, however, depended on the sample origin. Digesta-associated intestinal microbiota showed more pronounced changes than the mucosa-associated microbiota. Multivariate association analyses identified two mucosa-enriched taxa, Brevinema andersonii and Spirochaetaceae, associated with the expression of genes related to immune responses and barrier function in the distal intestine, respectively. Conclusions: Our data show that salmon intestinal digesta and mucosa harbor microbial communities with clear differences. While feeding insects increased microbial richness and diversity in both digesta- and mucosa-associated intestinal microbiota, mucosa-associated intestinal microbiota seems more resilient to variations in the diet composition. To fully unveil the response of intestinal microbiota to dietary changes, concurrent profiling of digesta- and mucosa-associated intestinal microbiota is recommended whenever feasible. Specific taxa enriched in the intestinal mucosa are associated to gene expression related to immune responses and barrier function. Detailed studies are needed on the ecological and functional significance of taxa associated to intestinal microbiota dwelling on the mucosa.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pabodha Weththasinghe ◽  
Leidy Lagos ◽  
Marcos Cortés ◽  
Jon Øvrum Hansen ◽  
Margareth Øverland

The present study investigated effects of dietary inclusion of black soldier fly larvae (BSFL) (Hermetia illucens) meal and paste on gut health, plasma biochemical parameters, immune response and skin mucus proteome in pre-smolt Atlantic salmon (Salmo salar). The seven-week experiment consisted of seven experimental diets: a control diet based on fishmeal and plant protein (Control-1); three BSFL meal diets, substituting 6.25% (6.25IM), 12.5% (12.5IM) and 25% (25IM) of protein; two BSFL paste diets, substituting 3.7% (3.7IP) and 6.7% (6.7IP) of protein and an extra control diet with 0.88% of formic acid (Control-2). The 6.25IM diet reduced enterocyte steatosis in pyloric caeca, improved distal intestine histology, and reduced IgM in distal intestine. The fish fed 12.5IM diet reduced enterocyte steatosis in pyloric caeca, improved distal intestine histology, had a higher plasma lysozyme content compared to 6.25IM, and tend to increase phagocytic activity in head-kidney macrophages-like cells. On the other hand, 25IM diet improved distal intestine histology, but showed mild-moderate enterocyte steatosis in pyloric caeca, increased IFNγ and reduced IgM in distal intestine. In the case of BSFL paste diets, 3.7IP diet caused mild inflammatory changes in distal intestine, although it reduced enterocyte steatosis in pyloric caeca. The 6.7IP diet reduced enterocyte steatosis in pyloric caeca and improved distal intestine histology. Increasing level of BSFL meal in the diet linearly decreased plasma C-reactive protein, whereas increasing level of BSFL paste linearly increased plasma antioxidant capacity. Dietary inclusion of BSFL meal and paste had minor effects on the expression profile of proteins in skin mucus and no effects on immune markers in splenocytes. BSFL meal showed no negative effect on liver and muscle health as indicated by plasma alanine aminotranseferase, asparate aminotransferase and creatine kinase. The present study showed that replacing conventional protein sources with low to moderate levels of BSFL meal (6.25% and 12.5%) or paste (3.7% and 6.7%) reduced enterocyte steatosis in pyloric caeca, while replacing up to 25% with BSFL meal or 6.7% with paste improved distal intestine histology. Further, dietary inclusion of BSFL meal and paste had minor effects on skin mucus proteome and immune response in Atlantic salmon.


2007 ◽  
Vol 97 (4) ◽  
pp. 699-713 ◽  
Author(s):  
Anne Marie Bakke-McKellep ◽  
Michael H. Penn ◽  
Patricia Mora Salas ◽  
Ståle Refstie ◽  
Sigmund Sperstad ◽  
...  

Soyabean meal (SBM)-induced enteritis in the distal intestine of the teleost Atlantic salmon (Salmo salar L.) and other salmonids may be considered a model for diet-related mucosal disorders in other animals and man. The role of the intestinal microbiota in its pathogenesis was explored. Compared to diets containing fishmeal (FM) as the sole protein source, responses to extracted SBM or the prebiotic inulin, with or without oxytetracycline (OTC) inclusion, were studied following a 3-week feeding trial. Intestinal microbiota, organosomatic indices and histology, as well as immunohistochemical detection of proliferating cell nuclear antigen (PCNA), heat shock protein 70 (HSP70) and caspase-3-positive cells in the distal intestine, were studied. Distal intestine somatic indices (DISI) were higher in inulin and lower in SBM compared to FM-fed fish. The low DISI caused by SBM corresponded with histological changes, neither of which was affected by OTC, despite a significant decrease in adherent bacteria count. Image analysis of PCNA-stained sections showed a significant increase in the proliferative compartment length in SBM-fed fish, accompanied by apparent increases in reactivity to HSP70 and caspase-3 along the mucosal folds, indicating induction of cellular repair and apoptosis, respectively. Fish fed the SBM diet had higher total number as well as a more diverse population composition of adherent bacteria in the distal intestine. Thus SBM-induced enteritis is accompanied by induction of distal intestinal epithelial cell protective responses and changes in microbiota. Putative involvement of bacteria in the inflammatory response merits further investigation.


Animals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 89 ◽  
Author(s):  
Alejandro Villasante ◽  
Carolina Ramírez ◽  
Natalia Catalán ◽  
Rafael Opazo ◽  
Patricio Dantagnan ◽  
...  

Atlantic salmon (Salmo salar) is a carnivorous fish species whose productive performance tends to be suboptimal when fed low-cost carbohydrate rich meals. It is of interest to study the dynamics of gut microbiota communities in salmonids fed high carbohydrate diets since gut microbes are referred to as key players that influence the metabolism and physiology of the host. A study was conducted to determine the effect of feeding a high carbohydrate diet to Atlantic salmon in gut microbiota communities. A medium carbohydrate (15% wheat starch)/medium protein (MC/MP) diet or a high carbohydrate (30% wheat starch)/low protein (HC/LP) diet was fed to triplicate tanks (28 fish each) during four weeks. We conducted an in-depth characterization of the distal intestine digesta microbiota using high-throughput sequencing of the V4 region of the 16S rRNA gene. Firmicutes, Actinobacteria and Proteobacteria were the major phyla determined in either experimental group. Phylum Planctomycetes, class Planctomycetia, order Planctomycetales and genus Lactococcus were significantly more abundant in fish fed the HC/LP diet compared with fish fed the MC/MP diet. Our study suggests feeding a carbohydrate rich meal to salmon exerts a low impact on the structure of gut microbial communities, affecting mostly low-abundance bacteria capable of metabolizing anaerobically carbohydrates as a major energy-yielding substrate.


2021 ◽  
Author(s):  
Yanxian Li ◽  
Karina Gajardo ◽  
Alexander Jaramillo-Torres ◽  
Trond M. Kortner ◽  
Ashild Krogdahl

Being part of fish's natural diets, insects have become a realistic, sustainable feed ingredient for aquaculture. While nutritional values of insects have been extensively studied in various fish species, their impact on the fish microbiota remains to be fully explored. In an 8-week freshwater feeding trial, Atlantic salmon (Salmo salar) were fed either a commercially relevant reference diet or an insect meal diet wherein black soldier fly (Hermetia illucens) larvae meal comprised 60% of total ingredients. Microbiota of digesta and mucosa origin from the proximal and distal intestine were collected and profiled along with feed and water samples. The insect meal diet markedly modulated the salmon intestinal microbiota . Overall, the microbial diversity was lower in the digesta of salmon fed the insect meal diet but higher in the mucosa. A group of bacterial genera, dominated by members of the Bacillaceae family, was enriched in salmon fed the insect meal diet, which confirms our previous findings in a seawater feeding trial. We also found that microbiota in the intestine closely resembled that of the feeds but was distinct from the water microbiota. Notably, bacterial genera associated with the diet effects were present in the feeds as well. In conclusion, our results show consistent changes in the intestinal microbiota of Atlantic salmon fed diets containing black soldier fly larvae meal.


Sign in / Sign up

Export Citation Format

Share Document