scholarly journals Identification of select G-protein coupled receptors as regulators of the ER-mitochondria contacts by drug screening

2020 ◽  
Author(s):  
Youngshin Lim ◽  
Il-Taeg Cho ◽  
Helmut G. Rennke ◽  
Ginam Cho

AbstractEndoplasmic reticulum-mitochondrial (ER-Mito) contacts are crucial for many cellular functions. Their dysregulation has been implicated in various disorders including neurodegenerative, cardiovascular and metabolic diseases, and cancer. However, little is known about the regulatory pathways of ER-Mito contacts. To uncover such pathways, we screened a drug library using a split-Renilla luciferase (split-Rluc) reassembly assay in HEK293T cells. We identified multiple agonists of G-protein coupled receptors (GPCRs), beta-adrenergic receptors (β-ARs) in particular. Using multiple independent assays, we validated that these drugs enhance the physical and functional interactions between ER and mitochondria. Our data provide evidence that GPCR signal modulates ER-Mito coupling through activating EPAC (exchange protein directly activated by cAMP) and increasing cytoplasmic Ca2+ levels, and that actin polymerization, likely regulated by CDC42 upon receptor activation, is required for this coupling. Together our study identifies GPCR signaling as a regulatory mechanism for ER-Mito contacts, and highlights the role of these contacts in responding to physiological demands or stresses.

2004 ◽  
Vol 32 (5) ◽  
pp. 871-872 ◽  
Author(s):  
V. Binet ◽  
C. Goudet ◽  
C. Brajon ◽  
L. Le Corre ◽  
F. Acher ◽  
...  

The GABAB (γ-aminobutyric acid-B) receptor is composed of two subunits, GABAB1 and GABAB2. Both subunits share structural homology with other class-III G-protein-coupled receptors. They contain two main domains, a heptahelical domain typical of all G-protein-coupled receptors and a large ECD (extracellular domain). It has not been demonstrated whether the association of these two subunits is always required for function. However, GABAB2 plays a major role in coupling with G-proteins, and GABAB1 has been shown to bind GABA. To date, only ligands interacting with GABAB1-ECD have been identified. In the present study, we explored the mechanism of action of CGP7930, a compound described as a positive allosteric regulator of the GABAB receptor. We have shown that it can weakly activate the wild-type GABAB receptor, but also the GABAB2 expressed alone, thus being the first described agonist of GABAB2. CGP7930 retains its weak agonist activity on a GABAB2 subunit deleted of its ECD. Thus the heptahelical domain of GABAB2 behaves similar to a rhodopsin-like receptor. These results open new strategies for studying the mechanism of activation of GABAB receptor and examine any possible role of GABAB2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Youngshin Lim ◽  
Il-Taeg Cho ◽  
Helmut G. Rennke ◽  
Ginam Cho

AbstractInteractions between the endoplasmic reticulum (ER) and mitochondria (Mito) are crucial for many cellular functions, and their interaction levels change dynamically depending on the cellular environment. Little is known about how the interactions between these organelles are regulated within the cell. Here we screened a compound library to identify chemical modulators for ER-Mito contacts in HEK293T cells. Multiple agonists of G-protein coupled receptors (GPCRs), beta-adrenergic receptors (β-ARs) in particular, scored in this screen. Analyses in multiple orthogonal assays validated that β2-AR activation promotes physical and functional interactions between the two organelles. Furthermore, we have elucidated potential downstream effectors mediating β2-AR-induced ER-Mito contacts. Together our study identifies β2-AR signaling as an important regulatory pathway for ER-Mito coupling and highlights the role of these contacts in responding to physiological demands or stresses.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Isabell Kaczmarek ◽  
Tomáš Suchý ◽  
Simone Prömel ◽  
Torsten Schöneberg ◽  
Ines Liebscher ◽  
...  

Abstract G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.


Author(s):  
Gayathri Viswanathan ◽  
Argen Mamazhakypov ◽  
Ralph T. Schermuly ◽  
Sudarshan Rajagopal

2001 ◽  
Vol 357 (2) ◽  
pp. 587-592 ◽  
Author(s):  
Nickolai O. DULIN ◽  
Sergei N. ORLOV ◽  
Chad M. KITCHEN ◽  
Tatyana A. VOYNO-YASENETSKAYA ◽  
Joseph M. MIANO

A hallmark of cultured smooth muscle cells (SMCs) is the rapid down-regulation of several lineage-restricted genes that define their in vivo differentiated phenotype. Identifying factors that maintain an SMC differentiated phenotype has important implications in understanding the molecular underpinnings governing SMC differentiation and their subversion to an altered phenotype in various disease settings. Here, we show that several G-protein coupled receptors [α-thrombin, lysophosphatidic acid and angiotensin II (AII)] increase the expression of smooth muscle calponin (SM-Calp) in rat and human SMC. The increase in SM-Calp protein appears to be selective for G-protein-coupled receptors as epidermal growth factor was without effect. Studies using AII showed a 30-fold increase in SM-Calp protein, which was dose- and time-dependent and mediated by the angiotensin receptor-1 (AT1 receptor). The increase in SM-Calp protein with AII was attributable to transcriptional activation of SM-Calp based on increases in steady-state SM-Calp mRNA, increases in SM-Calp promoter activity and complete abrogation of protein induction with actinomycin D. To examine the potential role of extracellular signal-regulated kinase (Erk1/2), protein kinase B, p38 mitogen-activated protein kinase and protein kinase C in AII-induced SM-Calp, inhibitors to each of the signalling pathways were used. None of these signalling molecules appears to be crucial for AII-induced SM-Calp expression, although Erk1/2 may be partially involved. These results identify SM-Calp as a target of AII-mediated signalling, and suggest that the SMC response to AII may incorporate a novel activity of SM-Calp.


2019 ◽  
Vol 30 (3) ◽  
pp. 346-356 ◽  
Author(s):  
Xi Wen ◽  
Xuehua Xu ◽  
Wenxiang Sun ◽  
Keqiang Chen ◽  
Miao Pan ◽  
...  

A dogma of innate immunity is that neutrophils use G-protein–coupled receptors (GPCRs) for chemoattractant to chase bacteria through chemotaxis and then use phagocytic receptors coupled with tyrosine kinases to destroy opsonized bacteria via phagocytosis. Our current work showed that G-protein–coupled formyl peptide receptors (FPRs) directly mediate neutrophil phagocytosis. Mouse neutrophils lacking formyl peptide receptors (Fpr1/2–/–) are defective in the phagocytosis of Escherichia coli and the chemoattractant N-formyl-Met-Leu-Phe (fMLP)-coated beads. fMLP immobilized onto the surface of a bead interacts with FPRs, which trigger a Ca2+response and induce actin polymerization to form a phagocytic cup for engulfment of the bead. This chemoattractant GPCR/Gi signaling works independently of phagocytic receptor/tyrosine kinase signaling to promote phagocytosis. Thus, in addition to phagocytic receptor-mediated phagocytosis, neutrophils also utilize the chemoattractant GPCR/Gi signaling to mediate phagocytosis to fight against invading bacteria.


2018 ◽  
Author(s):  
Zack Zurawski ◽  
Analisa D. Thompson Gray ◽  
Lillian J. Brady ◽  
Brian Page ◽  
Emily Church ◽  
...  

ABSTRACTGi/o-coupled G-protein coupled receptors modulate neurotransmission presynaptically through inhibition of exocytosis. Release of Gβγ subunits decreases the activity of voltage-gated calcium channels (VGCC), decreasing excitability. A less understood Gβγ–mediated mechanism downstream of calcium entry is the binding of Gβγ to SNARE complexes. Here, we create a mouse partially deficient in this interaction. SNAP25Δ3 homozygote animals are developmentally normalbut impaired gait and supraspinal nociception. They also have elevated stress-induced hyperthermia and impaired inhibitory postsynaptic responses to α2A-AR, but normal inhibitory postsynaptic responses to Gi/o-coupled GABAB receptor activation. SNAP25Δ3 homozygotes have deficits in inhibition of hippocampal postsynaptic responses to 5 HT1b agonists that affect hippocampal learning. These data suggest that Gi/o-coupled GPCR inhibition of exocytosis through the Gβγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.


Biochimie ◽  
2014 ◽  
Vol 107 ◽  
pp. 28-32 ◽  
Author(s):  
Olivier Soubias ◽  
Walter E. Teague ◽  
Kirk G. Hines ◽  
Klaus Gawrisch

2020 ◽  
Vol 21 (11) ◽  
pp. 3932 ◽  
Author(s):  
Preeti Kumari Chaudhary ◽  
Sanggu Kim ◽  
Youngheun Jee ◽  
Seung-Hun Lee ◽  
Kyung-Mee Park ◽  
...  

Platelet G protein-coupled receptors (GPCRs) regulate platelet function by mediating the response to various agonists, including adenosine diphosphate (ADP), thromboxane A2, and thrombin. Although GPCR kinases (GRKs) are considered to have the crucial roles in most GPCR functions, little is known regarding the regulation of GPCR signaling and mechanisms of GPCR desensitization by GRKs in platelets. In this study, we investigated the functional role of GRK6 and the molecular basis for regulation of specific GPCR desensitization by GRK6 in platelets. We used GRK6 knockout mice to evaluate the functional role of GRK6 in platelet activation. Platelet aggregation, dense- and α-granule secretion, and fibrinogen receptor activation induced by 2-MeSADP, U46619, thrombin, and AYPGKF were significantly potentiated in GRK6−/− platelets compared to the wild-type (WT) platelets. However, collagen-related peptide (CRP)-induced platelet aggregation and secretion were not affected in GRK6−/− platelets. Interestingly, platelet aggregation induced by co-stimulation of serotonin and epinephrine which activate Gq-coupled 5HT2A and Gz-coupled α2A adrenergic receptors, respectively, was not affected in GRK6−/− platelets, suggesting that GRK6 was involved in specific GPCR regulation. In addition, platelet aggregation in response to the second challenge of ADP and AYPGKF was restored in GRK6−/− platelets whereas re-stimulation of the agonist failed to induce aggregation in WT platelets, indicating that GRK6 contributed to P2Y1, P2Y12, and PAR4 receptor desensitization. Furthermore, 2-MeSADP-induced Akt phosphorylation and AYPGKF-induced Akt, extracellular signal-related kinase (ERK), and protein kinase Cδ (PKCδ) phosphorylation were significantly potentiated in GRK6−/− platelets. Finally, GRK6−/− mice exhibited an enhanced and stable thrombus formation after FeCl3 injury to the carotid artery and shorter tail bleeding times, indicating that GRK6−/− mice were more susceptible to thrombosis and hemostasis. We conclude that GRK6 plays an important role in regulating platelet functional responses and thrombus formation through selective GPCR desensitization.


Sign in / Sign up

Export Citation Format

Share Document