scholarly journals Global view on virus infection in non-human primates and implication for public health and wildlife conservation

Author(s):  
Zhijin Liu

AbstractThe pandemic outbreak and rapid worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not only a threat for humans, but potentially also for many animals. Research has revealed that SARS-CoV-2 and other coronaviruses have been transmitted from animals to humans and vice versa, and across animal species, and hence, attracted public attention concerning host-virus interactions and transmission ways. Non-human primates (NHPs), as our evolutionary closest relatives, are susceptible to human viruses, and a number of pathogens are known to circulate between humans and NHPs. Here we generated global statistics of virus infection in NHPs (VI-NHPs). In total, 121 NHP species from 14 families have been reported to be infected by 139 DNA and RNA viruses from 23 virus families; 74.8 percent of viruses in NHPs have also been found in humans, indicative of the high potential for cross species transmission of these viruses. The top ten NHP species with high centrality in the NHP-virus network are two apes (Pan troglodytes, Pongo pygmaeus), seven Old World monkeys (Macaca mulatta, M. fascicularis, Papio cynocephalus, Lophocebus albigena, Chlorocebus aethiops, Cercopithecus ascanius, C. nictitans) and a lemur (Propithecus diadema). Besides apes, there is a high risk of virus circulation between humans and Old World monkeys, given the wide distribution of many Old World monkey species and their frequent contact with humans. We suggest epidemiological investigations in NHPs, specifically in Old World monkeys with close contact to humans, and other effective measures to prevent this potential circular transmission.

Epidemiologia ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 46-67
Author(s):  
Antoinette C. van der Kuyl

Old World monkeys (OWM), simians inhabiting Africa and Asia, are currently affected by at least four infectious retroviruses, namely, simian foamy virus (SFV), simian immunodeficiency virus (SIV), simian T-lymphotropic virus (STLV), and simian type D retrovirus (SRV). OWM also show chromosomal evidence of having been infected in the past with four more retroviral species, baboon endogenous virus (BaEV), Papio cynocephalus endogenous virus (PcEV), simian endogenous retrovirus (SERV), and Rhesus endogenous retrovirus-K (RhERV-K/SERV-K1). For some of the viruses, transmission to other primates still occurs, resulting, for instance, in the HIV pandemic. Retroviruses are intimately connected with their host as they are normally spread by close contact. In this review, an attempt to reconstruct the distribution and history of OWM retroviruses will be made. A literature overview of the species infected by any of the eight retroviruses as well as an age estimation of the pathogens will be given. In addition, primate genomes from databases have been re-analyzed for the presence of endogenous retrovirus integrations. Results suggest that some of the oldest retroviruses, SERV and PcEV, have travelled with their hosts to Asia during the Miocene, when a higher global temperature allowed simian expansions. In contrast, younger viruses, such as SIV and SRV, probably due to the lack of a primate continuum between the continents in later times, have been restricted to Africa and Asia, respectively.


2021 ◽  
Author(s):  
Asheley H. B. Pereira ◽  
Claudia A. A. Lopes ◽  
Thalita A. Pissinatti ◽  
Ana C. A. Pinto ◽  
Daniel R. A. Oliveira ◽  
...  

Abstract Herein we present the pathological findings of different tuberculosis stages in Old and New World monkeys kept under human care in Rio de Janeiro, Brazil and naturally infected with Mycobacterium tuberculosis Complex. Fifteen nonhuman primates from five different colonies were incorporated into the study. There are 60% (9/15) Old World Monkeys and 40% (6/15) New World Monkeys. According to the gross and histopathologic findings, the lesions in nonhuman primates of this study are classified into the chronic-active, extrapulmonary, early-activation or latent-reactivation tuberculosis stage. Among the Old World Monkey, 66.7% (6/9) of nonhuman primates, all rhesus monkeys (Macaca mulatta), showed severe granulomatous pneumonia. In all Old World Monkeys cases, typical granulomas were seen in at least one organ regardless of the stage of the disease. In the New World Monkeys, the typical pulmonary granulomas were seen in 16.7% (1/6) of the cases, just in the latent-reactivation stage in Uta Hick’s Bearded Saki (Chiropotes utahickae). In this study, 66.7% (6/9) of Old World Monkeys (OWM) and 83.3% (5/6) of New World Monkeys (NWM) showed pulmonary changes at the histological evaluation. The tuberculosis diagnosis in the nonhuman primates in this study was based on pathological, immunohistochemical, molecular, and bacteriological culture. Although the typical presentation was observed in some cases, the absence of pulmonary granuloma did not exclude the tuberculosis occurrence in nonhuman primates of the Old and New World. Tuberculosis should be included as a cause of interstitial pneumonia with foamy macrophages infiltration in the New World nonhuman primates. Due to the high sensitivity of immunohistochemistry with Anti-Mycobacterium tuberculosis, we suggest the addition of this technique as a diagnostic tool of tuberculosis in the nonhuman primates even when the typical changes are not seen.


Virology ◽  
2003 ◽  
Vol 309 (2) ◽  
pp. 248-257 ◽  
Author(s):  
Althaf I. Hussain ◽  
Vedapuri Shanmugam ◽  
Vinod B. Bhullar ◽  
Brigitte E. Beer ◽  
Dominique Vallet ◽  
...  

2019 ◽  
Author(s):  
Silvia Spadacenta ◽  
Peter W. Dicke ◽  
Peter Thier

ABSTRACTThe ability to extract the direction of the other’s gaze allows us to shift our attention to an object of interest to the other and to establish joint attention. By mapping one’s own expectations, desires and intentions on the object of joint attention, humans develop a Theory of (the other’s) Mind (TOM), a functional sequence possibly disrupted in autism. Although old world monkeys probably do not possess a TOM, they follow the other’s gaze and they establish joint attention. Gaze following of both humans and old world monkeys fulfills Fodor’s criteria of a domain specific function and is orchestrated by very similar cortical architectures, strongly suggesting homology. Also new world monkeys, a primate suborder that split from the old world monkey line about 35 million years ago, have complex social structures. One member of this group, the common marmoset (Callithrix jacchus), has received increasing interest as a potential model in studies of normal and disturbed human social cognition. Marmosets are known to follow human head-gaze. However, the question is if they use gaze following to establish joint attention with conspecifics. Here we show that this is indeed the case. In a free choice task, head-restrained marmosets prefer objects gazed at by a conspecific and, moreover, they exhibit considerably shorter choice reaction times for the same objects. These findings support the assumption of an evolutionary old domain specific faculty shared within the primate order and they underline the potential value of marmosets in studies of normal and disturbed joint attention.HIGHLIGHTSCommon marmosets follow the head gaze of conspecifics in order to establish joint attention.Brief exposures to head gaze are sufficient to reallocate an animal’s attention.The tendency to follow the other’s gaze competes with the attractional binding of the conspecific’s face


1990 ◽  
Vol 10 (11) ◽  
pp. 5876-5882
Author(s):  
A G Matera ◽  
A M Weiner ◽  
C W Schmid

The organization of U2 genes was compared in apes, Old World monkeys, and the prosimian galago. In humans and all apes (gibbon, orangutan, gorilla, and chimpanzee), the U2 genes were organized as a tandem repeat of a 6-kb element; however, the restriction maps of the 6-kb elements in these divergent species differed slightly, demonstrating that mechanisms must exist for maintaining sequence homogeneity within this tandem array. In Old World monkeys, the U2 genes were organized as a tandem repeat of an 11-kb element; the restriction maps of the 11-kb elements in baboon and two closely related macaques, bonnet and rhesus monkeys, also differed slightly, confirming that efficient sequence homogenization is an intrinsic property of the U2 tandem array. Interestingly, the 11-kb monkey repeat unit differed from the 6-kb hominid repeat unit by a 5-kb block of monkey-specific sequence. Finally, we found that the U2 genes of the prosimian galago were dispersed rather than tandemly repeated, suggesting that the hominid and Old World monkey U2 tandem arrays resulted from independent amplifications of a common ancestral U2 gene. Alternatively, the 5-kb monkey-specific sequence could have been inserted into the 6-kb array or deleted from the 11-kb array soon after divergence of the hominid and Old World monkey lineages.


1990 ◽  
Vol 10 (11) ◽  
pp. 5876-5882 ◽  
Author(s):  
A G Matera ◽  
A M Weiner ◽  
C W Schmid

The organization of U2 genes was compared in apes, Old World monkeys, and the prosimian galago. In humans and all apes (gibbon, orangutan, gorilla, and chimpanzee), the U2 genes were organized as a tandem repeat of a 6-kb element; however, the restriction maps of the 6-kb elements in these divergent species differed slightly, demonstrating that mechanisms must exist for maintaining sequence homogeneity within this tandem array. In Old World monkeys, the U2 genes were organized as a tandem repeat of an 11-kb element; the restriction maps of the 11-kb elements in baboon and two closely related macaques, bonnet and rhesus monkeys, also differed slightly, confirming that efficient sequence homogenization is an intrinsic property of the U2 tandem array. Interestingly, the 11-kb monkey repeat unit differed from the 6-kb hominid repeat unit by a 5-kb block of monkey-specific sequence. Finally, we found that the U2 genes of the prosimian galago were dispersed rather than tandemly repeated, suggesting that the hominid and Old World monkey U2 tandem arrays resulted from independent amplifications of a common ancestral U2 gene. Alternatively, the 5-kb monkey-specific sequence could have been inserted into the 6-kb array or deleted from the 11-kb array soon after divergence of the hominid and Old World monkey lineages.


2019 ◽  
Vol 5 (2) ◽  
pp. eaav0499 ◽  
Author(s):  
Zuofu Xiang ◽  
Penglai Fan ◽  
Haochun Chen ◽  
Ruoshuang Liu ◽  
Bo Zhang ◽  
...  

While regular allomaternal nursing (suckling) has been documented in a number of rodent and carnivore species, as well as in some prosimians, New World monkeys, and humans, it is not common in Old World monkeys and apes. Here, we present a detailed field study of allomaternal nursing in golden snub-nosed monkeys (Rhinopithecus roxellana, Colobinae). We found that more than 87% of infants were nursed by females other than their mothers. Allomaternal nursing was largely confined to the first 3 months of an infant’s life and occurred predominantly between related females who nursed each other’s offspring in a reciprocal manner. Allomaternal nursing enhanced infant survivorship and did not have a negative impact on the future reproductive success of allonursers. Our findings expand the taxonomic distribution of allomaternal nursing and provide fresh insight into the possible factors driving evolution of allomaternal nursing behavior in primates, including humans.


2019 ◽  
Vol 116 (13) ◽  
pp. 6051-6056 ◽  
Author(s):  
D. Tab Rasmussen ◽  
Anthony R. Friscia ◽  
Mercedes Gutierrez ◽  
John Kappelman ◽  
Ellen R. Miller ◽  
...  

Old World monkeys (Cercopithecoidea) are a highly successful primate radiation, with more than 130 living species and the broadest geographic range of any extant group except humans. Although cercopithecoids are highly variable in habitat use, social behavior, and diet, a signature dental feature unites all of its extant members: bilophodonty (bi: two, loph: crest, dont: tooth), or the presence of two cross-lophs on the molars. This feature offers an adaptable Bauplan that, with small changes to its individual components, permits its members to process vastly different kinds of food. Old World monkeys diverged from apes perhaps 30 million years ago (Ma) according to molecular estimates, and the molar lophs are sometimes incompletely developed in fossil species, suggesting a mosaic origin for this key adaptation. However, critical aspects of the group’s earliest evolution remain unknown because the cercopithecoid fossil record before ∼18 Ma consists of only two isolated teeth, one from Uganda and one from Tanzania. Here we describe a primitive Old World monkey from Nakwai, Kenya, dated at ∼22 Ma, that offers direct evidence for the initial key steps in the evolution of the cercopithecoid dentition. The simple dentition and absence of bilophodonty in the Nakwai monkey indicate that the initial radiation of Old World monkeys was first characterized by a reorganization of basic molar morphology, and a reliance on cusps rather than lophs suggests frugivorous diets and perhaps hard object feeding. Bilophodonty evolved later, likely in response to the inclusion of leaves in the diet.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hyeon-Mu Cho ◽  
Sang-Je Park ◽  
Se-Hee Choe ◽  
Ja-Rang Lee ◽  
Sun-Uk Kim ◽  
...  

Abstract Background The BLOC1S2 gene encodes the multifunctional protein BLOS2, a shared subunit of two lysosomal trafficking complexes: i) biogenesis of lysosome-related organelles complex-1 and i) BLOC-1-related complex. In our previous study, we identified an intriguing unreported transcript of the BLOC1S2 gene that has a novel exon derived from two transposable elements (TEs), MIR and AluSp. To investigate the evolutionary footprint and molecular mechanism of action of this transcript, we performed PCR and RT-PCR experiments and sequencing analyses using genomic DNA and RNA samples from humans and various non-human primates. Results The results showed that the MIR element had integrated into the genome of our common ancestor, specifically in the BLOC1S2 gene region, before the radiation of all primate lineages and that the AluSp element had integrated into the genome of our common ancestor, fortunately in the middle of the MIR sequences, after the divergence of Old World monkeys and New World monkeys. The combined MIR and AluSp sequences provide a 3′ splice site (AG) and 5′ splice site (GT), respectively, and generate the Old World monkey-specific transcripts. Moreover, branch point sequences for the intron removal process are provided by the MIR and AluSp combination. Conclusions We show for the first time that sequential integration into the same location and sequence divergence events of two different TEs generated lineage-specific transcripts through sequence collaboration during primate evolution.


2005 ◽  
Vol 79 (7) ◽  
pp. 3930-3937 ◽  
Author(s):  
Byeongwoon Song ◽  
Hassan Javanbakht ◽  
Michel Perron ◽  
Do Hyun Park ◽  
Matthew Stremlau ◽  
...  

ABSTRACT The TRIM5α proteins of humans and some Old World monkeys have been shown to block infection of particular retroviruses following virus entry into the host cell. Infection of most New World monkey cells by the simian immunodeficiency virus of macaques (SIVmac) is restricted at a similar point. Here we examine the antiretroviral activity of TRIM5α orthologs from humans, apes, Old World monkeys, and New World monkeys. Chimpanzee and orangutan TRIM5α proteins functionally resembled human TRIM5α, potently restricting infection by N-tropic murine leukemia virus (N-MLV) and moderately restricting human immunodeficiency virus type 1 (HIV-1) infection. Notably, TRIM5α proteins from several New World monkey species restricted infection by SIVmac and the SIV of African green monkeys, SIVagm. Spider monkey TRIM5α, which has an expanded B30.2 domain v3 region due to a tandem triplication, potently blocked infection by a range of retroviruses, including SIVmac, SIVagm, HIV-1, and N-MLV. Tandem duplications in the TRIM5α B30.2 domain v1 region of African green monkeys are also associated with broader antiretroviral activity. Thus, variation in TRIM5α proteins among primate species accounts for the observed patterns of postentry restrictions in cells from these animals. The TRIM5α proteins of some monkey species exhibit dramatic lengthening of particular B30.2 variable regions and an expanded range of susceptible retroviruses.


Sign in / Sign up

Export Citation Format

Share Document