scholarly journals Quasi-essentiality of RNase Y in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis

Author(s):  
Martin Benda ◽  
Simon Woelfel ◽  
Katrin Gunka ◽  
Stefan Klumpp ◽  
Anja Poehlein ◽  
...  

ABSTRACTRNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase – α, β, β′. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the β or β’ subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed massive decreases in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.

2021 ◽  
Vol 22 (1) ◽  
pp. 434
Author(s):  
Yuria Jang ◽  
Hong Moon Sohn ◽  
Young Jong Ko ◽  
Hoon Hyun ◽  
Wonbong Lim

Background: Recently, it was reported that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4, also called GPR48) is another receptor for RANKL and was shown to compete with RANK to bind RANKL and suppress canonical RANK signaling during osteoclast differentiation. The critical role of the protein triad RANK–RANKL in osteoclastogenesis has made their binding an important target for the development of drugs against osteoporosis. In this study, point-mutations were introduced in the RANKL protein based on the crystal structure of the RANKL complex and its counterpart receptor RANK, and we investigated whether LGR4 signaling in the absence of the RANK signal could lead to the inhibition of osteoclastogenesis.; Methods: The effects of point-mutated RANKL (mRANKL-MT) on osteoclastogenesis were assessed by tartrate-resistant acid phosphatase (TRAP), resorption pit formation, quantitative real-time polymerase chain reaction (qPCR), western blot, NFATc1 nuclear translocation, micro-CT and histomorphological assay in wild type RANKL (mRANKL-WT)-induced in vitro and in vivo experimental mice model. Results: As a proof of concept, treatment with the mutant RANKL led to the stimulation of GSK-3β phosphorylation, as well as the inhibition of NFATc1 translocation, mRNA expression of TRAP and OSCAR, TRAP activity, and bone resorption, in RANKL-induced mouse models; and Conclusions: The results of our study demonstrate that the mutant RANKL can be used as a therapeutic agent for osteoporosis by inhibiting RANKL-induced osteoclastogenesis via comparative inhibition of RANKL. Moreover, the mutant RANKL was found to lack the toxic side effects of most osteoporosis treatments.


2007 ◽  
Vol 81 (17) ◽  
pp. 9004-9012 ◽  
Author(s):  
Robert M. Yarrington ◽  
Jichao Chen ◽  
Eric C. Bolton ◽  
Jef D. Boeke

ABSTRACT Ty1 reverse transcriptase/RNase H (RT/RH) is exquisitely sensitive to manganese concentrations. Elevated intracellular free Mn2+ inhibits Ty1 retrotransposition and in vitro Ty1 RT-polymerizing activity. Furthermore, Mn2+ inhibition is not limited to the Ty1 RT, as this ion similarly inhibits the activities of both avian myeloblastosis virus and human immunodeficiency virus type 1 RTs. To further characterize Mn2+ inhibition, we generated RT/RH suppressor mutants capable of increased Ty1 transposition in pmr1Δ cells. PMR1 codes for a P-type ATPase that regulates intracellular calcium and manganese ion homeostasis, and pmr1 mutants accumulate elevated intracellular manganese levels and display 100-fold less transposition than PMR1 + cells. Mapping of these suppressor mutations revealed, surprisingly, that suppressor point mutations localize not to the RT itself but to the RH domain of the protein. Furthermore, Mn2+ inhibition of in vitro RT activity is greatly reduced in all the suppressor mutants, whereas RH activity and cleavage specificity remain largely unchanged. These intriguing results reveal that the effect of these suppressor mutations is transmitted to the polymerase domain and suggest biochemical communication between these two domains during reverse transcription.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2551 ◽  
Author(s):  
Sathyadevi Palanisamy ◽  
Yu-Liang Wang ◽  
Yu-Jen Chen ◽  
Chiao-Yun Chen ◽  
Fu-Te Tsai ◽  
...  

Nitroxyl (HNO) plays a critical role in many physiological processes which includes vasorelaxation in heart failure, neuroregulation, and myocardial contractility. Powerful imaging tools are required to obtain information for understanding the mechanisms involved in these in vivo processes. In order to develop a rapid and high sensitive probe for HNO detection in living cells and the zebrafish model organism, 2-((2-(benzothiazole-2yl)benzylidene) amino)benzoic acid (AbTCA) as a ligand, and its corresponding copper(II) complex Cu(II)-AbTCA were synthesized. The reaction results of Cu(II)-AbTCA with Angeli’s salt showed that Cu(II)-AbTCA could detect HNO quantitatively in a range of 40–360 µM with a detection limit of 9.05 µM. Furthermore, Cu(II)-AbTCA is more selective towards HNO over other biological species including thiols, reactive nitrogen, and reactive oxygen species. Importantly, Cu(II)-AbTCA was successfully applied to detect HNO in living cells and zebrafish. The collective data reveals that Cu(II)-AbTCA could be used as a potential probe for HNO detection in living systems.


2016 ◽  
Vol 83 (6) ◽  
Author(s):  
Tal Argov ◽  
Lev Rabinovich ◽  
Nadejda Sigal ◽  
Anat A. Herskovits

ABSTRACT Construction of Listeria monocytogenes mutants by allelic exchange has been laborious and time-consuming due to lack of proficient selection markers for the final recombination event, that is, a marker conveying substance sensitivity to the bacteria bearing it, enabling the exclusion of merodiploids and selection for plasmid loss. In order to address this issue, we engineered a counterselection marker based on a mutated phenylalanyl-tRNA synthetase gene (pheS*). This mutation renders the phenylalanine-binding site of the enzyme more promiscuous and allows the binding of the toxic p-chloro-phenylalanine analog (p-Cl-phe) as a substrate. When pheS* is introduced into L. monocytogenes and highly expressed under control of a constitutively active promoter, the bacteria become sensitive to p-Cl-phe supplemented in the medium. This enabled us to utilize pheS* as a negative selection marker and generate a novel, efficient suicide vector for allelic exchange in L. monocytogenes. We used this vector to investigate the monocin genomic region in L. monocytogenes strain 10403S by constructing deletion mutants of the region. We have found this region to be active and to cause bacterial lysis upon mitomycin C treatment. The future applications of such an effective counterselection system, which does not require any background genomic alterations, are vast, as it can be modularly used in various selection systems (e.g., genetic screens). We expect this counterselection marker to be a valuable genetic tool in research on L. monocytogenes. IMPORTANCE L. monocytogenes is an opportunistic intracellular pathogen and a widely studied model organism. An efficient counterselection marker is a long-standing need in Listeria research for improving the ability to design and perform various genetic manipulations and screening systems for different purposes. We report the construction and utilization of an efficient suicide vector for allelic exchange which can be conjugated, leaves no marker in the bacterial chromosome, and does not require the use of sometimes leaky inducible promoters. This highly efficient genome editing tool for L. monocytogenes will allow for rapid sequential mutagenesis, introduction of point mutations, and design of screening systems. We anticipate that it will be extensively used by the research community and yield novel insights into the diverse fields studied using this model organism.


2006 ◽  
Vol 189 (5) ◽  
pp. 1736-1744 ◽  
Author(s):  
Montira Leelakriangsak ◽  
Kazuo Kobayashi ◽  
Peter Zuber

ABSTRACT The spx gene encodes an RNA polymerase-binding protein that exerts negative and positive transcriptional control in response to oxidative stress in Bacillus subtilis. It resides in the yjbC-spx operon and is transcribed from at least five promoters located in the yjbC regulatory region or in the yjbC-spx intergenic region. Induction of spx transcription in response to treatment with the thiol-specific oxidant diamide is the result of transcription initiation at the P3 promoter located upstream of the spx coding sequence. Previous studies conducted elsewhere and analyses of transcription factor mutants using transformation array technology have uncovered two transcriptional repressors, PerR and YodB, that target the cis-acting negative control elements of the P3 promoter. Expression of an spx-bgaB fusion carrying the P3 promoter is elevated in a yodB or perR mutant, and an additive increase in expression was observed in a yodB perR double mutant. Primer extension analysis of spx RNA shows the same additive increase in P3 transcript levels in yodB perR mutant cells. Purified YodB and PerR repress spx transcription in vitro when wild-type spx P3 promoter DNA was used as a template. Point mutations at positions within the P3 promoter relieved YodB-dependent repression, while a point mutation at position +24 reduced PerR repression. DNase I footprinting analysis showed that YodB protects a region that includes the P3 −10 and −35 regions, while PerR binds to a region downstream of the P3 transcriptional start site. The binding of both repressors is impaired by the treatment of footprinting reactions with diamide or hydrogen peroxide. The study has uncovered a mechanism of dual negative control that relates to the oxidative stress response of gram-positive bacteria.


2018 ◽  
Vol 200 (17) ◽  
Author(s):  
Olga Ramaniuk ◽  
Martin Převorovský ◽  
Jiří Pospíšil ◽  
Dragana Vítovská ◽  
Olga Kofroňová ◽  
...  

ABSTRACTThe σIsigma factor fromBacillus subtilisis a σ factor associated with RNA polymerase (RNAP) that was previously implicated in adaptation of the cell to elevated temperature. Here, we provide a comprehensive characterization of this transcriptional regulator. By transcriptome sequencing (RNA-seq) of wild-type (wt) and σI-null strains at 37°C and 52°C, we identified ∼130 genes affected by the absence of σI. Further analysis revealed that the majority of these genes were affected indirectly by σI. The σIregulon, i.e., the genes directly regulated by σI, consists of 16 genes, of which eight (thedhbandykuoperons) are involved in iron metabolism. The involvement of σIin iron metabolism was confirmed phenotypically. Next, we set up anin vitrotranscription system and defined and experimentally validated the promoter sequence logo that, in addition to −35 and −10 regions, also contains extended −35 and −10 motifs. Thus, σI-dependent promoters are relatively information rich in comparison with most other promoters. In summary, this study supplies information about the least-explored σ factor from the industrially important model organismB. subtilis.IMPORTANCEIn bacteria, σ factors are essential for transcription initiation. Knowledge about their regulons (i.e., genes transcribed from promoters dependent on these σ factors) is the key for understanding how bacteria cope with the changing environment and could be instrumental for biotechnologically motivated rewiring of gene expression. Here, we characterize the σIregulon from the industrially important model Gram-positive bacteriumBacillus subtilis. We reveal that σIaffects expression of ∼130 genes, of which 16 are directly regulated by σI, including genes encoding proteins involved in iron homeostasis. Detailed analysis of promoter elements then identifies unique sequences important for σI-dependent transcription. This study thus provides a comprehensive view on this underexplored component of theB. subtilistranscription machinery.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lina Hamouche ◽  
Cyrille Billaudeau ◽  
Anna Rocca ◽  
Arnaud Chastanet ◽  
Saravuth Ngo ◽  
...  

ABSTRACT Metabolic turnover of mRNA is fundamental to the control of gene expression in all organisms, notably in fast-adapting prokaryotes. In many bacteria, RNase Y initiates global mRNA decay via an endonucleolytic cleavage, as shown in the Gram-positive model organism Bacillus subtilis. This enzyme is tethered to the inner cell membrane, a pseudocompartmentalization coherent with its task of initiating mRNA cleavage/maturation of mRNAs that are translated at the cell periphery. Here, we used total internal reflection fluorescence microscopy (TIRFm) and single-particle tracking (SPT) to visualize RNase Y and analyze its distribution and dynamics in living cells. We find that RNase Y diffuses rapidly at the membrane in the form of dynamic short-lived foci. Unlike RNase E, the major decay-initiating RNase in Escherichia coli, the formation of foci is not dependent on the presence of RNA substrates. On the contrary, RNase Y foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. The Y-complex of three proteins (YaaT, YlbF, and YmcA) has previously been shown to play an important role for RNase Y activity in vivo. We demonstrate that Y-complex mutations have an effect similar to but much stronger than that of depletion of RNA in increasing the number and size of RNase Y foci at the membrane. Our data suggest that the Y-complex shifts the assembly status of RNase Y toward fewer and smaller complexes, thereby increasing cleavage efficiency of complex substrates like polycistronic mRNAs. IMPORTANCE All living organisms must degrade mRNA to adapt gene expression to changing environments. In bacteria, initiation of mRNA decay generally occurs through an endonucleolytic cleavage. In the Gram-positive model organism Bacillus subtilis and probably many other bacteria, the key enzyme for this task is RNase Y, which is anchored at the inner cell membrane. While this pseudocompartmentalization appears coherent with translation occurring primarily at the cell periphery, our knowledge on the distribution and dynamics of RNase Y in living cells is very scarce. Here, we show that RNase Y moves rapidly along the membrane in the form of dynamic short-lived foci. These foci become more abundant and increase in size following transcription arrest, suggesting that they do not constitute the most active form of the nuclease. This contrasts with RNase E, the major decay-initiating RNase in E. coli, where it was shown that formation of foci is dependent on the presence of RNA substrates. We also show that a protein complex (Y-complex) known to influence the specificity of RNase Y activity in vivo is capable of shifting the assembly status of RNase Y toward fewer and smaller complexes. This highlights fundamental differences between RNase E- and RNase Y-based degradation machineries.


Virology ◽  
2012 ◽  
Vol 427 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Greta A. Van Slyke ◽  
Alexander T. Ciota ◽  
Graham G. Willsey ◽  
Joachim Jaeger ◽  
Pei-Yong Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document