scholarly journals The Rapid Deployment of a 3D Printed “Latticed” Nasopharyngeal Swab for COVID-19 Testing Made Using Digital Light Synthesis

Author(s):  
Ian Bennett ◽  
Philip L. Bulterys ◽  
Melody Chang ◽  
Joseph M. DeSimone ◽  
Jennifer Fralick ◽  
...  

ABSTRACTThe novel coronavirus disease (COVID-19) has caused a pandemic that has disrupted supply chains globally. This black swan event is challenging industries from all sectors of the economy including those industries directly needed to produce items that safeguard us from the disease itself, especially personal protection equipment (N95 masks, face shields) and much needed consumables associated with testing and vaccine delivery (swabs, vials and viral transfer medium). Digital manufacturing, especially 3D printing, has been promulgated as an important approach for the rapid development of new products as well as a replacement manufacturing technique for many traditional manufacturing methods, including injection molding, when supply chains are disrupted. Herein we report the use of Digital Light Synthesis (DLS) for the design and large-scale deployment of nasopharyngeal (NP) swabs for testing of coronavirus SARS-CoV-2 infections in humans. NP swabs have been one of society’s essential products hardest hit by the supply chain disruptions caused by COVID-19. A latticed tip NP swab was designed and fabricated by DLS from a liquid resin previously developed and approved for use to make dental night guard devices. These latticed NP swabs demonstrated non-inferiority in a human clinical study of patients suspected of being infected with SARS-CoV-2.

2020 ◽  
Vol 8 (4) ◽  
pp. 13-18
Author(s):  
Xiaojie Geng

The delay of the school term in China, caused by the Corona Virus Disease 2019(COVID-19)pandemic, reinforced the importance of remote teaching. The latter enabled teaching operations to continue nationwide and provided colleges and universities with opportunities to carry out education and teaching reforms that are also aligned with the rapid development of technology. Upon considering remote teaching operations in China University of Geosciences, Beijing, this paper puts forward recommendations for teaching and education management practices. We propose that colleges and universities break free from the restraints of traditional teaching methods, establish a security system of online courses, offer high quality online contents, and accelerate the construction and sharing of effective courses.


2021 ◽  
Author(s):  
J. J. Johannes Hjorth ◽  
Jeanette Hellgren Kotaleski ◽  
Alexander Kozlov

AbstractSimulation of large-scale networks of neurons is an important approach to understanding and interpreting experimental data from healthy and diseased brains. Owing to the rapid development of simulation software and the accumulation of quantitative data of different neuronal types, it is possible to predict both computational and dynamical properties of local microcircuits in a ‘bottom-up’ manner. Simulated data from these models can be compared with experiments and ‘top-down’ modelling approaches, successively bridging the scales. Here we describe an open source pipeline, using the software Snudda, for predicting microcircuit connectivity and for setting up simulations using the NEURON simulation environment in a reproducible way. We also illustrate how to further ‘curate’ data on single neuron morphologies acquired from public databases. This model building pipeline was used to set up a first version of a full-scale cellular level model of mouse dorsal striatum. Model components from that work are here used to illustrate the different steps that are needed when modelling subcortical nuclei, such as the basal ganglia.


2021 ◽  
Author(s):  
J J Johannes Hjorth ◽  
Jeanette Hellgren Kotaleski ◽  
Alexander Kozlov

AbstractSimulation of large-scale networks of neurons is an important approach to understanding and interpreting experimental data from healthy and diseased brains. Owing to the rapid development of simulation software and the accumulation of quantitative data of different neuronal types, it is possible to predict both computational and dynamical properties of local microcircuits in a ‘bottom-up’ manner. Simulated data from these models can be compared with experiments and ‘top-down’ modelling approaches, successively bridging the scales. Here we describe an open source pipeline, using the software Snudda, for predicting microcircuit connectivity and for setting up simulations using the NEURON simulation environment in a reproducible way. We also illustrate how to further ‘curate’ data on single neuron morphologies acquired from public databases. This model building pipeline was used to set up a first version of a full-scale cellular level model of mouse dorsal striatum. Model components from that work are here used to illustrate the different steps that are needed when modelling subcortical nuclei, such as the basal ganglia.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


Author(s):  
B. Aparna ◽  
S. Madhavi ◽  
G. Mounika ◽  
P. Avinash ◽  
S. Chakravarthi

We propose a new design for large-scale multimedia content protection systems. Our design leverages cloud infrastructures to provide cost efficiency, rapid deployment, scalability, and elasticity to accommodate varying workloads. The proposed system can be used to protect different multimedia content types, including videos, images, audio clips, songs, and music clips. The system can be deployed on private and/or public clouds. Our system has two novel components: (i) method to create signatures of videos, and (ii) distributed matching engine for multimedia objects. The signature method creates robust and representative signatures of videos that capture the depth signals in these videos and it is computationally efficient to compute and compare as well as it requires small storage. The distributed matching engine achieves high scalability and it is designed to support different multimedia objects. We implemented the proposed system and deployed it on two clouds: Amazon cloud and our private cloud. Our experiments with more than 11,000 videos and 1 million images show the high accuracy and scalability of the proposed system. In addition, we compared our system to the protection system used by YouTube and our results show that the YouTube protection system fails to detect most copies of videos, while our system detects more than 98% of them.


2020 ◽  
Vol 11 ◽  
Author(s):  
Dimitris G. Placantonakis ◽  
Maria Aguero-Rosenfeld ◽  
Abdallah Flaifel ◽  
John Colavito ◽  
Kenneth Inglima ◽  
...  

Neurologic manifestations of the novel coronavirus SARS-CoV-2 infection have received wide attention, but the mechanisms remain uncertain. Here, we describe computational data from public domain RNA-seq datasets and cerebrospinal fluid data from adult patients with severe COVID-19 pneumonia that suggest that SARS-CoV-2 infection of the central nervous system is unlikely. We found that the mRNAs encoding the ACE2 receptor and the TMPRSS2 transmembrane serine protease, both of which are required for viral entry into host cells, are minimally expressed in the major cell types of the brain. In addition, CSF samples from 13 adult encephalopathic COVID-19 patients diagnosed with the viral infection via nasopharyngeal swab RT-PCR did not show evidence for the virus. This particular finding is robust for two reasons. First, the RT-PCR diagnostic was validated for CSF studies using stringent criteria; and second, 61% of these patients had CSF testing within 1 week of a positive nasopharyngeal diagnostic test. We propose that neurologic sequelae of COVID-19 are not due to SARS-CoV-2 meningoencephalitis and that other etiologies are more likely mechanisms.


Author(s):  
Sharon C Perelman ◽  
Steven Erde ◽  
Lynda Torre ◽  
Tunaidi Ansari

Abstract COVID-19 quickly immobilized healthcare systems in the United States during the early stages of the outbreak. While much of the ensuing response focused on supporting the medical infrastructure, Columbia University College of Dental Medicine pursued a solution to triage and safely treat patients with dental emergencies amidst the pandemic. Considering rapidly changing guidelines from governing bodies, dental infection control protocols and our clinical faculty's expertise, we modeled, built, and implemented a screening algorithm, which provides decision support as well as insight into COVID-19 status and clinical comorbidities, within a newly integrated Electronic Health Record (EHR). Once operationalized, we analyzed the data and outcomes of its utilization and found that it had effectively guided providers in triaging patient needs in a standardized methodology. This article describes the algorithm's rapid development to assist faculty providers in identifying patients with the most urgent needs, thus prioritizing treatment of dental emergencies during the pandemic.


Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Iwein Gyselinck ◽  
◽  
Laurens Liesenborghs ◽  
Ewout Landeloos ◽  
Ann Belmans ◽  
...  

Abstract Background The rapid emergence and the high disease burden of the novel coronavirus SARS-CoV-2 have created a medical need for readily available drugs that can decrease viral replication or blunt the hyperinflammatory state leading to severe COVID-19 disease. Azithromycin is a macrolide antibiotic, known for its immunomodulatory properties. It has shown antiviral effect specifically against SARS-CoV-2 in vitro and acts on cytokine signaling pathways that have been implicated in COVID-19. Methods DAWn-AZITHRO is a randomized, open-label, phase 2 proof-of-concept, multicenter clinical trial, evaluating the safety and efficacy of azithromycin for treating hospitalized patients with COVID-19. It is part of a series of trials testing promising interventions for COVID-19, running in parallel and grouped under the name DAWn-studies. Patients hospitalized on dedicated COVID wards are eligible for study inclusion when they are symptomatic (i.e., clinical or radiological signs) and have been diagnosed with COVID-19 within the last 72 h through PCR (nasopharyngeal swab or bronchoalveolar lavage) or chest CT scan showing typical features of COVID-19 and without alternate diagnosis. Patients are block-randomized (9 patients) with a 2:1 allocation to receive azithromycin plus standard of care versus standard of care alone. Standard of care is mostly supportive, but may comprise hydroxychloroquine, up to the treating physician’s discretion and depending on local policy and national health regulations. The treatment group receives azithromycin qd 500 mg during the first 5 consecutive days after inclusion. The trial will include 284 patients and recruits from 15 centers across Belgium. The primary outcome is time from admission (day 0) to life discharge or to sustained clinical improvement, defined as an improvement of two points on the WHO 7-category ordinal scale sustained for at least 3 days. Discussion The trial investigates the urgent and still unmet global need for drugs that may impact the disease course of COVID-19. It will either provide support or else justify the discouragement of the current widespread, uncontrolled use of azithromycin in patients with COVID-19. The analogous design of other parallel trials of the DAWN consortium will amplify the chance of identifying successful treatment strategies and allow comparison of treatment effects within an identical clinical context. Trial registration EU Clinical trials register EudraCT Nb 2020-001614-38. Registered on 22 April 2020


Healthcare ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 126
Author(s):  
Hai-Feng Ling ◽  
Zheng-Lian Su ◽  
Xun-Lin Jiang ◽  
Yu-Jun Zheng

In a large-scale epidemic, such as the novel coronavirus pneumonia (COVID-19), there is huge demand for a variety of medical supplies, such as medical masks, ventilators, and sickbeds. Resources from civilian medical services are often not sufficient for fully satisfying all of these demands. Resources from military medical services, which are normally reserved for military use, can be an effective supplement to these demands. In this paper, we formulate a problem of integrated civilian-military scheduling of medical supplies for epidemic prevention and control, the aim of which is to simultaneously maximize the overall satisfaction rate of the medical supplies and minimize the total scheduling cost, while keeping a minimum ratio of medical supplies reservation for military use. We propose a multi-objective water wave optimization (WWO) algorithm in order to efficiently solve this problem. Computational results on a set of problem instances constructed based on real COVID-19 data demonstrate the effectiveness of the proposed method.


2021 ◽  
Author(s):  
Cong Wang ◽  
Zehao Song ◽  
Pei Shi ◽  
Lin Lv ◽  
Houzhao Wan ◽  
...  

With the rapid development of portable electronic devices, electric vehicles and large-scale grid energy storage devices, it needs to reinforce specific energy and specific power of related electrochemical devices meeting...


Sign in / Sign up

Export Citation Format

Share Document