scholarly journals Molecular mechanisms underlying the extreme mechanical anisotropy of the flaviviral exoribonuclease-resistant RNAs (xrRNAs)

2020 ◽  
Author(s):  
Xiaolin Niu ◽  
Qiuhan Liu ◽  
Zhonghe Xu ◽  
Zhifeng Chen ◽  
Linghui Xu ◽  
...  

Mechanical anisotropy is an essential property for many biomolecules to assume their structures, functions and applications, however, the mechanisms for their direction-dependent mechanical responses remain elusive. Herein, by using single-molecule nanopore sensing technique, we explore the mechanisms of directional mechanical stability of the xrRNA1 RNA from ZIKA virus (ZIKV), which forms a complex ring-like architecture. We reveal extreme mechanical anisotropy in ZIKV xrRNA1 which highly depends on Mg2+ and the key tertiary interactions. The absence of Mg2+ and disruption of the key tertiary interactions strongly affect the structural integrity and attenuate mechanical anisotropy. The significance of ring structure in RNA mechanical anisotropy is further supported by steered molecular dynamics simulations on ZIKV xrRNA1 and another two RNAs with ring structures, the HCV IRES and THF riboswitch. We anticipate the ring structures can be used as key elements to build RNA-based nanostructures with controllable mechanical anisotropy for biomaterial and biomedical applications.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaolin Niu ◽  
Qiuhan Liu ◽  
Zhonghe Xu ◽  
Zhifeng Chen ◽  
Linghui Xu ◽  
...  

Abstract Mechanical anisotropy is an essential property for many biomolecules to assume their structures, functions and applications, however, the mechanisms for their direction-dependent mechanical responses remain elusive. Herein, by using a single-molecule nanopore sensing technique, we explore the mechanisms of directional mechanical stability of the xrRNA1 RNA from ZIKA virus (ZIKV), which forms a complex ring-like architecture. We reveal extreme mechanical anisotropy in ZIKV xrRNA1 which highly depends on Mg2+ and the key tertiary interactions. The absence of Mg2+ and disruption of the key tertiary interactions strongly affect the structural integrity and attenuate mechanical anisotropy. The significance of ring structures in RNA mechanical anisotropy is further supported by steered molecular dynamics simulations in combination with force distribution analysis. We anticipate the ring structures can be used as key elements to build RNA-based nanostructures with controllable mechanical anisotropy for biomaterial and biomedical applications.


Science ◽  
2018 ◽  
Vol 359 (6383) ◽  
pp. 1527-1533 ◽  
Author(s):  
Lukas F. Milles ◽  
Klaus Schulten ◽  
Hermann E. Gaub ◽  
Rafael C. Bernardi

High resilience to mechanical stress is key when pathogens adhere to their target and initiate infection. Using atomic force microscopy–based single-molecule force spectroscopy, we explored the mechanical stability of the prototypical staphylococcal adhesin SdrG, which targets a short peptide from human fibrinogen β. Steered molecular dynamics simulations revealed, and single-molecule force spectroscopy experiments confirmed, the mechanism by which this complex withstands forces of over 2 nanonewtons, a regime previously associated with the strength of a covalent bond. The target peptide, confined in a screwlike manner in the binding pocket of SdrG, distributes forces mainly toward the peptide backbone through an intricate hydrogen bond network. Thus, these adhesins can attach to their target with exceptionally resilient mechanostability, virtually independent of peptide side chains.


2010 ◽  
Vol 107 (5) ◽  
pp. 1989-1994 ◽  
Author(s):  
Dora L. Guzmán ◽  
Arlo Randall ◽  
Pierre Baldi ◽  
Zhibin Guan

Resolving molecular determinants of mechanical stability of proteins is crucial in the rational design of advanced biomaterials for use in biomedical and nanotechnological applications. Here we present an interdisciplinary study combining bioinformatics screening, steered molecular dynamics simulations, protein engineering, and single-molecule force spectroscopy that explores the mechanical properties of a macro domain protein with mixed α + β topology. The unique architecture is defined by a single seven-stranded β-sheet in the core of the protein flanked by five α-helices. Unlike mechanically stable proteins studied thus far, the macro domain provides the distinct advantage of having the key load-bearing hydrogen bonds (H bonds) buried in the hydrophobic core protected from water attacks. This feature allows direct measurement of the force required to break apart the load-bearing H bonds under locally hydrophobic conditions. Steered molecular dynamics simulations predicted extremely high mechanical stability of the macro domain by using constant velocity and constant force methods. Single-molecule force spectroscopy experiments confirm the exceptional mechanical strength of the macro domain, measuring a rupture force as high as 570 pN. Furthermore, through selective deletion of shielding peptide segments, we examined the same key H bonds under hydrophilic environments in which the β-strands are exposed to solvent and verify that the high mechanical stability of the macro domain results from excellent shielding of the load-bearing H bonds from competing water. Our study reveals that shielding water accessibility to the load-bearing strands is a critical molecular determinant for enhancing the mechanical stability of proteins.


2009 ◽  
Vol 106 (17) ◽  
pp. 6992-6997 ◽  
Author(s):  
Thomas Bornschlögl ◽  
Günther Woehlke ◽  
Matthias Rief

Structural integrity as well as mechanical stability of the parts of a molecular motor are crucial for its function. In this study, we used high-resolution force spectroscopy by atomic force microscopy to investigate the force-dependent opening kinetics of the neck coiled coil of Kinesin-1 from Drosophila melanogaster. We find that even though the overall thermodynamic stability of the neck is low, the average opening force of the coiled coil is >11 pN when stretched with pulling velocities >150 nm/s. These high unzipping forces ensure structural integrity during motor motion. The high mechanical stability is achieved through a very narrow N-terminal unfolding barrier if compared with a conventional leucine zipper. The experimentally mapped mechanical unzipping profile allows direct assignment of distinct mechanical stabilities to the different coiled-coil subunits. The coiled-coil sequence seems to be tuned in an optimal way to ensure both mechanical stability as well as motor regulation through charged residues.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2019 ◽  
Vol 16 (3) ◽  
pp. 291-300
Author(s):  
Saumya K. Patel ◽  
Mohd Athar ◽  
Prakash C. Jha ◽  
Vijay M. Khedkar ◽  
Yogesh Jasrai ◽  
...  

Background: Combined in-silico and in-vitro approaches were adopted to investigate the antiplasmodial activity of Catharanthus roseus and Tylophora indica plant extracts as well as their isolated components (vinblastine, vincristine and tylophorine). </P><P> Methods: We employed molecular docking to prioritize phytochemicals from a library of 26 compounds against Plasmodium falciparum multidrug-resistance protein 1 (PfMDR1). Furthermore, Molecular Dynamics (MD) simulations were performed for a duration of 10 ns to estimate the dynamical structural integrity of ligand-receptor complexes. </P><P> Results: The retrieved bioactive compounds viz. tylophorine, vinblastin and vincristine were found to exhibit significant interacting behaviour; as validated by in-vitro studies on chloroquine sensitive (3D7) as well as chloroquine resistant (RKL9) strain. Moreover, they also displayed stable trajectory (RMSD, RMSF) and molecular properties with consistent interaction profile in molecular dynamics simulations. </P><P> Conclusion: We anticipate that the retrieved phytochemicals can serve as the potential hits and presented findings would be helpful for the designing of malarial therapeutics.


2021 ◽  
Vol 22 (5) ◽  
pp. 2398
Author(s):  
Wooyoung Kang ◽  
Seungha Hwang ◽  
Jin Young Kang ◽  
Changwon Kang ◽  
Sungchul Hohng

Two different molecular mechanisms, sliding and hopping, are employed by DNA-binding proteins for their one-dimensional facilitated diffusion on nonspecific DNA regions until reaching their specific target sequences. While it has been controversial whether RNA polymerases (RNAPs) use one-dimensional diffusion in targeting their promoters for transcription initiation, two recent single-molecule studies discovered that post-terminational RNAPs use one-dimensional diffusion for their reinitiation on the same DNA molecules. Escherichia coli RNAP, after synthesizing and releasing product RNA at intrinsic termination, mostly remains bound on DNA and diffuses in both forward and backward directions for recycling, which facilitates reinitiation on nearby promoters. However, it has remained unsolved which mechanism of one-dimensional diffusion is employed by recycling RNAP between termination and reinitiation. Single-molecule fluorescence measurements in this study reveal that post-terminational RNAPs undergo hopping diffusion during recycling on DNA, as their one-dimensional diffusion coefficients increase with rising salt concentrations. We additionally find that reinitiation can occur on promoters positioned in sense and antisense orientations with comparable efficiencies, so reinitiation efficiency depends primarily on distance rather than direction of recycling diffusion. This additional finding confirms that orientation change or flipping of RNAP with respect to DNA efficiently occurs as expected from hopping diffusion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Simone Ruggeri ◽  
Johnny Habchi ◽  
Sean Chia ◽  
Robert I. Horne ◽  
Michele Vendruscolo ◽  
...  

AbstractSignificant efforts have been devoted in the last twenty years to developing compounds that can interfere with the aggregation pathways of proteins related to misfolding disorders, including Alzheimer’s and Parkinson’s diseases. However, no disease-modifying drug has become available for clinical use to date for these conditions. One of the main reasons for this failure is the incomplete knowledge of the molecular mechanisms underlying the process by which small molecules interact with protein aggregates and interfere with their aggregation pathways. Here, we leverage the single molecule morphological and chemical sensitivity of infrared nanospectroscopy to provide the first direct measurement of the structure and interaction between single Aβ42 oligomeric and fibrillar species and an aggregation inhibitor, bexarotene, which is able to prevent Aβ42 aggregation in vitro and reverses its neurotoxicity in cell and animal models of Alzheimer’s disease. Our results demonstrate that the carboxyl group of this compound interacts with Aβ42 aggregates through a single hydrogen bond. These results establish infrared nanospectroscopy as a powerful tool in structure-based drug discovery for protein misfolding diseases.


Biophysica ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 279-296
Author(s):  
Federico Fogolari ◽  
Gennaro Esposito

Estimation of solvent entropy from equilibrium molecular dynamics simulations is a long-standing problem in statistical mechanics. In recent years, methods that estimate entropy using k-th nearest neighbours (kNN) have been applied to internal degrees of freedom in biomolecular simulations, and for the rigorous computation of positional-orientational entropy of one and two molecules. The mutual information expansion (MIE) and the maximum information spanning tree (MIST) methods were proposed and used to deal with a large number of non-independent degrees of freedom, providing estimates or bounds on the global entropy, thus complementing the kNN method. The application of the combination of such methods to solvent molecules appears problematic because of the indistinguishability of molecules and of their symmetric parts. All indistiguishable molecules span the same global conformational volume, making application of MIE and MIST methods difficult. Here, we address the problem of indistinguishability by relabeling water molecules in such a way that each water molecule spans only a local region throughout the simulation. Then, we work out approximations and show how to compute the single-molecule entropy for the system of relabeled molecules. The results suggest that relabeling water molecules is promising for computation of solvation entropy.


Glycobiology ◽  
2021 ◽  
Author(s):  
Margrethe Gaardløs ◽  
Sergey A Samsonov ◽  
Marit Sletmoen ◽  
Maya Hjørnevik ◽  
Gerd Inger Sætrom ◽  
...  

Abstract Mannuronan C-5 epimerases catalyse the epimerization of monomer residues in the polysaccharide alginate, changing the physical properties of the biopolymer. The enzymes are utilized to tailor alginate to numerous biological functions by alginate-producing organisms. The underlying molecular mechanisms that control the processive movement of the epimerase along the substrate chain is still elusive. To study this, we have used an interdisciplinary approach combining molecular dynamics simulations with experimental methods from mutant studies of AlgE4, where initial epimerase activity and product formation were addressed with NMR spectroscopy, and characteristics of enzyme-substrate interactions were obtained with isothermal titration calorimetry and optical tweezers. Positive charges lining the substrate-binding groove of AlgE4 appear to control the initial binding of poly-mannuronate, and binding also seems to be mediated by both electrostatic and hydrophobic interactions. After the catalytic reaction, negatively charged enzyme residues might facilitate dissociation of alginate from the positive residues, working like electrostatic switches, allowing the substrate to translocate in the binding groove. Molecular simulations show translocation increments of two monosaccharide units before the next productive binding event resulting in MG-block formation, with the epimerase moving with its N-terminus towards the reducing end of the alginate chain. Our results indicate that the charge pair R343-D345 might be directly involved in conformational changes of a loop that can be important for binding and dissociation. The computational and experimental approaches used in this study complement each other, allowing for a better understanding of individual residues’ roles in binding and movement along the alginate chains.


Sign in / Sign up

Export Citation Format

Share Document