scholarly journals The plasticity of the pyruvate dehydrogenase complex confers a labile structure that is associated with its catalytic activity

2020 ◽  
Author(s):  
Jaehyoun Lee ◽  
Seunghee Oh ◽  
Saikat Bhattacharya ◽  
Ying Zhang ◽  
Laurence Florens ◽  
...  

ABSTRACTThe pyruvate dehydrogenase complex (PDC) is a multienzyme complex that plays a key role in energy metabolism by converting pyruvate to acetyl-CoA. An increase of nuclear PDC has been shown to be correlated with an increase of histone acetylation that requires acetyl-CoA. PDC has been reported to form a ~ 10 MDa macromolecular machine that is proficient in performing sequential catalytic reactions via its three components. In this study, we show that the PDC displays size versatility in an ionic strength-dependent manner using size exclusion chromatography of yeast cell extracts. Biochemical analysis in combination with mass spectrometry indicates that yeast PDC (yPDC) is a salt-labile complex that dissociates into sub-megadalton individual components even under physiological ionic strength. Interestingly, we find that each oligomeric component of yPDC displays a larger size than previously believed. In addition, we show that the mammalian PDC also displays this uncommon characteristic of salt-lability, although it has a somewhat different profile compared to yeast. We show that the activity of yPDC is reduced in higher ionic strength. Our results indicate that the structure of PDC may not always maintain its ~ 10 MDa organization, but is rather variable. We propose that the flexible nature of PDC may allow modulation of its activity.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243489
Author(s):  
Jaehyoun Lee ◽  
Seunghee Oh ◽  
Saikat Bhattacharya ◽  
Ying Zhang ◽  
Laurence Florens ◽  
...  

The pyruvate dehydrogenase complex (PDC) is a multienzyme complex that plays a key role in energy metabolism by converting pyruvate to acetyl-CoA. An increase of nuclear PDC has been shown to be correlated with an increase of histone acetylation that requires acetyl-CoA. PDC has been reported to form a ~ 10 MDa macromolecular machine that is proficient in performing sequential catalytic reactions via its three components. In this study, we show that the PDC displays size versatility in an ionic strength-dependent manner using size exclusion chromatography of yeast cell extracts. Biochemical analysis in combination with mass spectrometry indicates that yeast PDC (yPDC) is a salt-labile complex that dissociates into sub-megadalton individual components even under physiological ionic strength. Interestingly, we find that each oligomeric component of yPDC displays a larger size than previously believed. In addition, we show that the mammalian PDC also displays this uncommon characteristic of salt-lability, although it has a somewhat different profile compared to yeast. We show that the activity of yPDC is reduced in higher ionic strength. Our results indicate that the structure of PDC may not always maintain its ~ 10 MDa organization, but is rather variable. We propose that the flexible nature of PDC may allow modulation of its activity.


1994 ◽  
Vol 49 (7-8) ◽  
pp. 421-426 ◽  
Author(s):  
Andrea Golz ◽  
Hartmut K. Lichtenthaler

The activity of the plastidic pyruvate dehydrogenase complex (pPDHC) is one source of acetyl-CoA in plastids of higher plants needed for de novo fatty acid biosynthesis. This plastidic enzyme reaction is specifically inhibited by acetylmethylphosphinate (AMPI), a com ­ pound which had hitherto been known only as an inhibitor of the mitochondrial pyruvate dehydrogenase complex (mPDHC). In the test system of isolated intact oat plastids (Avena sativa) [2-14C]pyruvate was used for de novo fatty acid biosynthesis. The incorporation of label from [2-14C]pyruvate in fatty acids was inhibited by AMPI in a dose-dependent manner. The inhibition rose with increasing preincubation time of plastids with the inhibitor. I50 values for the inhibition of de novo fatty acid biosynthesis from [2-14C]pyruvate by AMPI for iso­lated etioplasts and chloroplasts were 4.5 and 80 μm , respectively. The activity of the pPDHC decreased during greening of oat seedlings, as is seen from the decreasing incorporation of [2-14C]pyruvate into fatty acids during the light-induced transformation of etioplasts into chloroplasts. In contrast to the decreasing pPDHC activity, the activity of the plastidic acetyl-C oA synthetase (ACS), which transfers acetate to acetyl-CoA, rose parallel to the transfor­mation of etioplasts into chloroplasts. During the assay time of 20 min we could not detect an incorporation of radiolabel from pyruvate or acetate into β-carotene or any other carotenoid


1998 ◽  
Vol 329 (1) ◽  
pp. 191-196 ◽  
Author(s):  
Melissa M. BOWKER-KINLEY ◽  
I. Wilhelmina DAVIS ◽  
Pengfei WU ◽  
A. Robert HARRIS ◽  
M. Kirill POPOV

Tissue distribution and kinetic parameters for the four isoenzymes of pyruvate dehydrogenase kinase (PDK1, PDK2, PDK3 and PDK4) identified thus far in mammals were analysed. It appeared that expression of these isoenzymes occurs in a tissue-specific manner. The mRNA for isoenzyme PDK1 was found almost exclusively in rat heart. The mRNA for PDK3 was most abundantly expressed in rat testis. The message for PDK2 was present in all tissues tested but the level was low in spleen and lung. The mRNA for PDK4 was predominantly expressed in skeletal muscle and heart. The specific activities of the isoenzymes varied 25-fold, from 50 nmol/min per mg for PDK2 to 1250 nmol/min per mg for PDK3. Apparent Ki values of the isoenzymes for the synthetic analogue of pyruvate, dichloroacetate, varied 40-fold, from 0.2 mM for PDK2 to 8 mM for PDK3. The isoenzymes were also different with respect to their ability to respond to NADH and NADH plus acetyl-CoA. NADH alone stimulated the activities of PDK1 and PDK2 by 20 and 30% respectively. NADH plus acetyl-CoA activated these isoenzymes nearly 200 and 300%. Under comparable conditions, isoenzyme PDK3 was almost completely unresponsive to NADH, and NADH plus acetyl-CoA caused inhibition rather than activation. Isoenzyme PDK4 was activated almost 2-fold by NADH, but NADH plus acetyl-CoA did not activate above the level seen with NADH alone. These results provide the first evidence that the unique tissue distribution and kinetic characteristics of the isoenzymes of PDK are among the major factors responsible for tissue-specific regulation of the pyruvate dehydrogenase complex activity.


1994 ◽  
Vol 41 (1) ◽  
pp. 63-72
Author(s):  
T Pawełczyk ◽  
R A Easom ◽  
M S Olson

The effects of various mono- and divalent ions on the pyruvate dehydrogenase complex (PDC) were investigated. To determine the radius of PDC under various conditions a two-dimensional agarose gel electrophoresis technique was used. The radius of PDC cross-linked with glutaraldehyde at ionic strength 0.04 M was calculated to be 22.0 +/- 0.1 nm. The presence of K+, Na+ or HPO4(2-) prevented changes in electromobility and of the calculated radius of PDC induced by alteration in ionic strength. The fluorescence emission spectra of PDC depended on the ionic strength and monovalent cations. The fluorescence intensity of PDC increased in the presence of 80 mM K+, and decreased in the presence of 80 mM Na+ with no shift in the emission maximum wavelength. Changes in the ionic strength to which PDC was exposed resulted in alteration of the UV absorption spectra in the 230 nm region. These alterations were prevented by HPO4(2-), whereas Na+ or K+ ions had no effect on the UV absorption spectrum of PDC.


1993 ◽  
Vol 40 (3) ◽  
pp. 411-419 ◽  
Author(s):  
T Pawełczyk ◽  
M S Olson

The activity of the pyruvate dehydrogenase complex (PDC) purified from pig kidney medulla was affected by K+, Na+, Cl-, HCO3-, HPO4(2-) and changes in ionic strength. Increased ionic strength influenced the activity of PDC from medulla by decreasing the Vmax and S0.5 for pyruvate and increasing the Hill coefficient. The magnitude of these changes was smaller than the corresponding changes for PDC purified from the cortex. In the presence of K+ (80 mM), Na+ (20 mM), Cl- (20 mM), HCO3- (20 mM), HPO4(2-) (10 mM) and at ionic strength of 0.15 M the S0.5 for pyruvate of PDC from medulla was 117 microM and the enzyme complex was saturated by 1.1 mM pyruvate. Under these conditions the S0.5 for pyruvate of PDC derived from cortex was 159 microM and the enzyme was saturated at 4.5 mM pyruvate. Based on the results presented in this report it is suggested that PDC in kidney medulla may be regulated not only by a phosphorylation/dephosphorylation system and end-product inhibition but also via changes in ionic strength.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Edward R. Smith ◽  
Timothy D. Hewitson

Abstract TGF-β1 reprograms metabolism in renal fibroblasts, inducing a switch from oxidative phosphorylation to aerobic glycolysis. However, molecular events underpinning this are unknown. Here we identify that TGF-β1 downregulates acetyl-CoA biosynthesis via regulation of the pyruvate dehydrogenase complex (PDC). Flow cytometry showed that TGF-β1 reduced the PDC subunit PDH-E1α in fibroblasts derived from injured, but not normal kidneys. An increase in expression of PDH kinase 1 (PDK1), and reduction in the phosphatase PDP1, were commensurate with net phosphorylation and inactivation of PDC. Over-expression of mutant PDH-E1α, resistant to phosphorylation, ameliorated effects of TGF-β1, while inhibition of PDC activity with CPI-613 was sufficient to induce αSMA and pro-collagen I expression, markers of myofibroblast differentiation and fibroblast activation. The effect of TGF-β1 on PDC activity, acetyl-CoA, αSMA and pro-collagen I was also ameliorated by sodium dichloroacetate, a small molecule inhibitor of PDK. A reduction in acetyl-CoA, and therefore acetylation substrate, also resulted in a generalised loss of protein acetylation with TGF-β1. In conclusion, TGF-β1 in part regulates fibroblast activation via effects on PDC activity.


2000 ◽  
Vol 28 (6) ◽  
pp. 591-593 ◽  
Author(s):  
B. J. Nikolau ◽  
D. J. Oliver ◽  
P. S. Schnable ◽  
E. S. Wurtele

We have characterized the expression of potential acetyl-CoA-generating genes (acetyl-CoA synthetase, pyruvate decarboxylase, acetaldehyde dehydrogenase, plastidic pyruvate dehydrogenase complex and ATP-citrate lyase), and compared these with the expression of acetyl-CoA-metabolizing genes (heteromeric and homomeric acetyl-CoA carboxylase). These comparisons have led to the development of testable hypotheses as to how distinct pools of acetyl-CoA are generated and metabolized. These hypotheses are being tested by combined biochemical, genetic and molecular biological experiments, which is providing insights into how acetyl-CoA metabolism is regulated.


2020 ◽  
Vol 7 (2) ◽  
pp. 3645-3658
Author(s):  
Abolfazl Nasiri ◽  
Masoud Sadeghi ◽  
Asad Vaisi-Raygani ◽  
Sara Kiani ◽  
Zahra Aghelan ◽  
...  

The pyruvate dehydrogenase complex (PDC) is a multi-enzyme complex of the mitochondria that provides a link between glycolysis and the Krebs cycle. PDC plays an essential role in producing acetyl-CoA from glucose and the regulation of fuel consumption. In general, PDC enzyme is regulated in two different ways, end-product inhibition and posttranslational modifications (more extensive phosphorylation and dephosphorylation subunit E1). Posttranslational modifications of this enzyme are regulated by various factors. Sirtuins are the class III of histone deacylatases that catalyze protein posttranslational modifications, including deacetylation, adenosine diphosphate ribosylation, and deacylation. Sirt3, Sirt4, and Sirt5 are mitochondrial sirtuins that control the posttranslational modifications of mitochondrial protein. Considering the comprehensive role of sirtuins in post-translational modifications and regulation of metabolic processes, the aim of this review is to explore the role of mitochondrial sirtuins in the regulation of the PDC. PDC deficiency is a common metabolic disorder that causes pyruvate to be converted to lactate and alanine rather than to acetyl-CoA. because this enzyme is in the gateway of complete oxidation, glucose products entering the Krebs cycle and resulting in physiological and structural changes in the organs. Metabolic blockage such as ketogenic diet broken up by b -oxidation and producing acetyl-CoA can improve the patients. Sirtuins play a role in the production of acetyl-CoA through oxidation of fatty acids and other pathways. Thus, we hypothesize that the targets and bioactive compounds targeting mitochondrial sirtuins can be involved in the treatment of PDC deficiency. In general, this review discusses the present knowledge on how mitochondrial sirtuins are involved in the regulation of PDC as well as their possible roles in the treatment of PDC deficiency.


2021 ◽  
Author(s):  
Christina Wolf ◽  
Alireza Pouya ◽  
Sara Bitar ◽  
Annika Pfeiffer ◽  
Diones Caeran Bueno ◽  
...  

Abstract Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular calcium homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 in a redox-dependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. Changes in the actin cytoskeleton also disrupt mitochondria-ER contact sites. This results in lower mitochondrial calcium levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, these findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology.


2002 ◽  
Vol 366 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Alina TUGANOVA ◽  
Igor BOULATNIKOV ◽  
Kirill M. POPOV

Protein—protein interactions play an important role in the regulation of enzymic activity of pyruvate dehydrogenase kinase (PDK). It is generally believed that the binding of PDK to the inner lipoyl-bearing domain L2 of the transacetylase component E2 of pyruvate dehydrogenase complex largely determines the level of kinase activity. In the present study, we characterized the interaction between the individual isoenzymes of PDK (PDK1—PDK4) and monomeric L2 domain of human E2, as well as the effect of this interaction on kinase activity. It was found that PDK isoenzymes are markedly different with respect to their affinities for L2. PDK3 demonstrated a very tight binding, which persisted during isolation of PDK3—L2 complexes using size-exclusion chromatography. Binding of PDK1 and PDK2 was readily reversible with the apparent dissociation constant of approx. 10μM for both isoenzymes. PDK4 had a greatly reduced capacity for L2 binding (relative order PDK3>PDK1 = PDK2>PDK4). Monomeric L2 domain alone had very little effect on the activities of either PDK1 or PDK2. In contrast, L2 caused a 3-fold increase in PDK3 activity and approx. 37% increase in PDK4 activity. These results strongly suggest that the interactions between the individual isoenzymes of PDK and L2 domain are isoenzyme-specific and might be among the major factors that determine the level of kinase activity of particular isoenzyme towards the pyruvate dehydrogenase complex.


Sign in / Sign up

Export Citation Format

Share Document