scholarly journals HDAC4 controls senescence and aging by safeguarding the epigenetic identity and ensuring the genomic integrity

2020 ◽  
Author(s):  
Eros Di Giorgio ◽  
Harikrishnareddy Paluvai ◽  
Emiliano Dalla ◽  
Liliana Ranzino ◽  
Alessandra Renzini ◽  
...  

ABSTRACTThe epigenome of senescent cells is characterized by a deep redistribution of H3K27 acetylation. H3K27 is target of class IIa Histone Deacetylases (HDAC4, 5, 7, 9) as part of large repressive complexes. We report here that, among class IIa HDACs, HDAC4 is post-transcriptionally downregulated during senescence and aging. HDAC4 knock-out (KO) triggers premature senescence as a result of two waves of biological events: the accumulation of replication stress (RS) and the expression of inflammatory genes. The latter is achieved directly, through the activation of enhancers (TEs) and super-enhancers (SEs) that are normally monitored by HDAC4, and indirectly, through the de-repression of repetitive elements of retroviral origin (ERVs). The accumulation of DNA damage and the activation of the inflammatory signature influence each other and integrate into a synergistic response required for senescence onset. Our work discloses the key role played by HDAC4 in maintaining epigenome identity and genome integrity.

2017 ◽  
Vol 37 (14) ◽  
Author(s):  
Keith Wheaton ◽  
Denise Campuzano ◽  
Weili Ma ◽  
Michal Sheinis ◽  
Brandon Ho ◽  
...  

ABSTRACT Hutchinson-Gilford progeria syndrome (HGPS) is caused by a mutation in LMNA that produces an aberrant lamin A protein, progerin. The accumulation of progerin in HGPS cells leads to an aberrant nuclear morphology, genetic instability, and p53-dependent premature senescence. How p53 is activated in response to progerin production is unknown. Here we show that young cycling HGPS fibroblasts exhibit chronic DNA damage, primarily in S phase, as well as delayed replication fork progression. We demonstrate that progerin binds to PCNA, altering its distribution away from replicating DNA in HGPS cells, leading to γH2AX formation, ATR activation, and RPA Ser33 phosphorylation. Unlike normal human cells that can be immortalized by enforced expression of telomerase alone, immortalization of HGPS cells requires telomerase expression and p53 repression. In addition, we show that the DNA damage response in HGPS cells does not originate from eroded telomeres. Together, these results establish that progerin interferes with the coordination of essential DNA replication factors, causing replication stress, and is the primary signal for p53 activation leading to premature senescence in HGPS. Furthermore, this damage response is shown to be independent of progerin farnesylation, implying that unprocessed lamin A alone causes replication stress.


2020 ◽  
Author(s):  
Dan Sarni ◽  
Alon Shtrikman ◽  
Yifat S. Oren ◽  
Batsheva Kerem

AbstractDNA replication is a complex process that is tightly regulated to ensure faithful genome duplication, and its perturbation leads to DNA damage and genomic instability. Oncogene expression triggers replicative stress that can lead to genetic instability, driving cancer progression. Thus, revealing the molecular basis for oncogene-induced replication stress is important for understanding of oncogenesis. Here we show that the activation of mutated HRAS leads to a non-canonical replication stress characterized by accelerated replication rate, inducing DNA damage. Mutated HRAS increases topoisomerase 1 (TOP1) expression, which leads to reduced levels of RNA-DNA hybrids (R-loops), driving fork acceleration and damage formation. Restoration of the perturbed replication either by restoration of TOP1 levels or directly by mild replication inhibition results in a dramatic reduction in DNA damage. The findings highlight the importance of TOP1 equilibrium in the regulation of R-loop homeostasis to ensure faithful DNA replication and genome integrity that when dysregulated can be a mechanism of oncogene-induced DNA damage.


2020 ◽  
Author(s):  
Sandrine Ragu ◽  
Gabriel Matos-Rodrigues ◽  
Nathalie Droin ◽  
Aurélia Barascu ◽  
Sylvain Caillat ◽  
...  

AbstractThe DNA damage response (DDR) interrupts cell cycle progression to restore genome integrity. However, unchallenged proliferating cells are continually exposed to endogenous stress, raising the question of a stress-threshold for DDR activation. Here, we identified a stress threshold below which primary human fibroblasts, activate a cell-autonomous response that not activates full DDR and not arrests cell cycle progression,. We characterized this “pre-DDR” response showing that it triggers the production of reactive oxygen species (ROS) by the NADPH oxidases DUOX1 and DUOX2, under the control of NF-κB and PARP1. Then, replication stress-induced ROS (RIR) activates the FOXO1 detoxifying pathway, preventing the nuclear accumulation of the pre-mutagenic 8-oxoGuanine lesion, upon endogenous as well as exogenous pro-oxidant stress. Increasing the replication stress severity above the threshold triggers the canonical DDR, leading to cell cycle progression arrest, but also to RIR suppression. These data reveal that cells adapt their response to stress severity, unveiling a tightly regulated ”pre-DDR” adaptive response that protects genome integrity without arresting cell cycle progression.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Deepti Sharma ◽  
Louis De Falco ◽  
Sivaraman Padavattan ◽  
Chang Rao ◽  
Susana Geifman-Shochat ◽  
...  

AbstractThe poly(ADP-ribose) polymerase, PARP1, plays a key role in maintaining genomic integrity by detecting DNA damage and mediating repair. γH2A.X is the primary histone marker for DNA double-strand breaks and PARP1 localizes to H2A.X-enriched chromatin damage sites, but the basis for this association is not clear. We characterize the kinetics of PARP1 binding to a variety of nucleosomes harbouring DNA double-strand breaks, which reveal that PARP1 associates faster with (γ)H2A.X- versus H2A-nucleosomes, resulting in a higher affinity for the former, which is maximal for γH2A.X-nucleosome that is also the activator eliciting the greatest poly-ADP-ribosylation catalytic efficiency. The enhanced activities with γH2A.X-nucleosome coincide with increased accessibility of the DNA termini resulting from the H2A.X-Ser139 phosphorylation. Indeed, H2A- and (γ)H2A.X-nucleosomes have distinct stability characteristics, which are rationalized by mutational analysis and (γ)H2A.X-nucleosome core crystal structures. This suggests that the γH2A.X epigenetic marker directly facilitates DNA repair by stabilizing PARP1 association and promoting catalysis.


2021 ◽  
Vol 22 (11) ◽  
pp. 5782
Author(s):  
Ashwini Makhale ◽  
Devathri Nanayakkara ◽  
Prahlad Raninga ◽  
Kum Kum Khanna ◽  
Murugan Kalimutho

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer lacking targeted therapy. Here, we evaluated the anti-cancer activity of APR-246, a P53 activator, and CX-5461, a RNA polymerase I inhibitor, in the treatment of TNBC cells. We tested the efficacy of individual and combination therapy of CX-5461 and APR-246 in vitro, using a panel of breast cancer cell lines. Using publicly available breast cancer datasets, we found that components of RNA Pol I are predominately upregulated in basal-like breast cancer, compared to other subtypes, and this upregulation is associated with poor overall and relapse-free survival. Notably, we found that the treatment of breast cancer cells lines with CX-5461 significantly hampered cell proliferation and synergistically enhanced the efficacy of APR-246. The combination treatment significantly induced apoptosis that is associated with cleaved PARP and Caspase 3 along with Annexin V positivity. Likewise, we also found that combination treatment significantly induced DNA damage and replication stress in these cells. Our data provide a novel combination strategy by utilizing APR-246 in combination CX-5461 in killing TNBC cells that can be further developed into more effective therapy in TNBC therapeutic armamentarium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nashaat Turkman ◽  
Daxing Liu ◽  
Isabella Pirola

AbstractSmall molecules that contain the (TFMO) moiety were reported to specifically inhibit the class-IIa histone deacetylases (HDACs), an important target in cancer and the disorders of the central nervous system (CNS). However, radiolabeling methods to incorporate the [18F]fluoride into the TFMO moiety are lacking. Herein, we report a novel late-stage incorporation of [18F]fluoride into the TFMO moiety in a single radiochemical step. In this approach the bromodifluoromethyl-1,2,4-oxadiazole was converted into [18F]TFMO via no-carrier-added bromine-[18F]fluoride exchange in a single step, thus producing the PET tracers with acceptable radiochemical yield (3–5%), high radiochemical purity (> 98%) and moderate molar activity of 0.33–0.49 GBq/umol (8.9–13.4 mCi/umol). We validated the utility of the novel radiochemical design by the radiosynthesis of [18F]TMP195, which is a known TFMO containing potent inhibitor of class-IIa HDACs.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1583
Author(s):  
Sara Pescatori ◽  
Francesco Berardinelli ◽  
Jacopo Albanesi ◽  
Paolo Ascenzi ◽  
Maria Marino ◽  
...  

17β-estradiol (E2) regulates human physiology both in females and in males. At the same time, E2 acts as a genotoxic substance as it could induce DNA damages, causing the initiation of cellular transformation. Indeed, increased E2 plasma levels are a risk factor for the development of several types of cancers including breast cancer. This paradoxical identity of E2 undermines the foundations of the physiological definition of “hormone” as E2 works both as a homeostatic regulator of body functions and as a genotoxic compound. Here, (i) the molecular circuitries underlying this double face of E2 are reviewed, and (ii) a possible framework to reconcile the intrinsic discrepancies of the E2 function is reported. Indeed, E2 is a regulator of the DNA damage response, which this hormone exploits to calibrate its genotoxicity with its physiological effects. Accordingly, the genes required to maintain genome integrity belong to the E2-controlled cellular signaling network and are essential for the appearance of the E2-induced cellular effects. This concept requires an “upgrade” to the vision of E2 as a “genotoxic hormone”, which balances physiological and detrimental pathways to guarantee human body homeostasis. Deregulation of this equilibrium between cellular pathways would determine the E2 pathological effects.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 479
Author(s):  
Pavel Vodicka ◽  
Ladislav Andera ◽  
Alena Opattova ◽  
Ludmila Vodickova

The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1289 ◽  
Author(s):  
Xing Bian ◽  
Wenchu Lin

Small cell lung cancer (SCLC), accounting for about 15% of all cases of lung cancer worldwide, is the most lethal form of lung cancer. Despite an initially high response rate of SCLC to standard treatment, almost all patients are invariably relapsed within one year. Effective therapeutic strategies are urgently needed to improve clinical outcomes. Replication stress is a hallmark of SCLC due to several intrinsic factors. As a consequence, constitutive activation of the replication stress response (RSR) pathway and DNA damage repair system is involved in counteracting this genotoxic stress. Therefore, therapeutic targeting of such RSR and DNA damage repair pathways will be likely to kill SCLC cells preferentially and may be exploited in improving chemotherapeutic efficiency through interfering with DNA replication to exert their functions. Here, we summarize potentially valuable targets involved in the RSR and DNA damage repair pathways, rationales for targeting them in SCLC treatment and ongoing clinical trials, as well as possible predictive biomarkers for patient selection in the management of SCLC.


Sign in / Sign up

Export Citation Format

Share Document